

Practical chiller refrigerant choices to optimize your bottom line

June 21, 2016 Brian S. Smith

Topics

- 1. Framework for decision making: regulatory, codes and standards changes at a glance
- 2. Available refrigerant options
- 3. Economic and environmental trade-offs between choices
- 4. Implications of refrigerant choice

Refrigerant Regulations: What has happened?

Regulating Ozone Depletion Refrigerants

- Montreal Protocol
 - Phase Out HCFC in New Equipment after Dec. 31, 2019
 (Dec. 31, 2029 for developing nations)
 - Phase Out HCFC Production after Dec. 31, 2029
 (Dec. 31, 2039 for developing nations)

Regulating Efficiency and High GWP Refrigerants in Europe

- Eco-Design drives for higher energy standards, and responsible use of refrigerants with greater reporting and tracking of usage and leaks
- F-Gas European Regulation -79% by 2030 (2015 baseline)

Enabling the Use of Flammable Refrigerants

 Many countries allow for very limited quantities of flammable refrigerants in residential or small-charge systems

Refrigerant Regulations: What is being considered?

Potential Regulations on Ozone Depletion Refrigerants

- High Ambient Applications
 - Montreal Protocol considering potential extension of R-22 use for high ambient applications due to insufficient low-GWP alternatives
- Potential Regulations on High GWP Refrigerants
 - US EPA SNAP Proposal 2024?
 - US EPA Canada Proposal 2025?
- Potential Regulations for the Use of Flammable Refrigerants
 - European (EN-378) standard 2016-2017?
 - Defines safety and environmental requirements for use of refrigerants with updates to address new A2L flammable refrigerants
 - Differentiates between direct and indirect systems

What are the refrigerant options?

Natural Refrigerants

CFC and HCFC

HFC

HFO and HFO Blends

- Biggest Concern: Application Capabilities
- Biggest Concern:
 Ozone Depletion
 Potential
- Biggest Concern: GWP
- Biggest Concern: low efficiency leads to high emissions

- Flammability, toxicity, technical design complications
- CFCs phased outHCFC phase-out
- HCFC phase-out underway
- Refrigerant technology of choice used worldwide

- Cost and availability questions
- Some are flammable

- Examples: Propane, ammonia, CO2
- Examples:R-11, R-12, R-123,R-22
- Examples: R-134a,R-32, R-410A
- Examples: R-1234ze, R-513A

^{*} Examples are representative list and not comprehensive list of options for each category

What are the refrigerant options?

Low pressure

(centrifugal chillers)

- Biggest Concerns: longterm stability & larger components
- R-123 alternative pressures are too high, or lose capacity
- Non-flammable options
- Lower and higher toxicity options
- Examples: R-1233zd, R-1336mzz, R-514A

Medium pressure

(centrifugal & screw chillers)

Biggest Concerns: performance & cost

- Most widely used refrigerant for screw & centrifugal chillers
- Non-flammable and flammable options exist

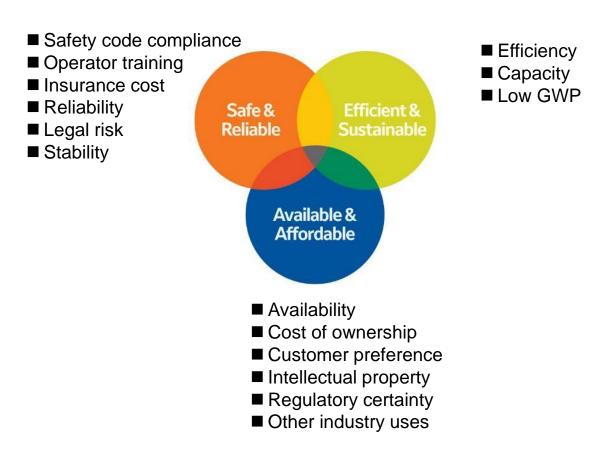
Examples: R-134a,
 R-513A, R-1234ze

High pressure

(scroll chillers)

Biggest Concern: flammability

- Cost and availability questions
- All are flammable



Examples: R-32, DR-5a

^{*} Examples are representative list and not comprehensive list of options for each category

How do I choose between the refrigerant options?

Picking a chiller based on refrigerant alone can result in unintended consequences for the owner and the environment

What about using flammable refrigerants?

Need to protect your best interests

Supporters of the newer low-GWP refrigerants that have flammability are promoting use before our commercial customers are ready...

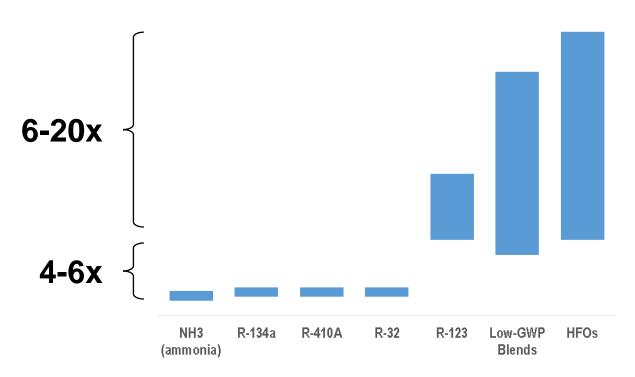
 Equipment safety standards are being revisedBut the are not c 	complete!
---	-----------

- 2. Building codes need to adopt new standards.....But they are not written yet!
- 3. Technicians need to be trainedBut A2L specific training doesn't exist!

Critical Items:

- Safety standards
- Building codes
- Technician training will pace the use of flammable refrigerants in commercial applications

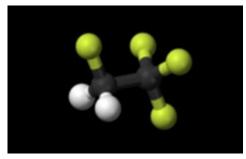
I have facilities where we deal with flammable materials and I am accustomed to the higher level of safety precautions.


So what's my best choice?

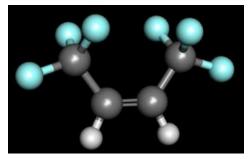
How does the current cost of low-GWP refrigerants compare with HFCs?

Expensive, about 4-6x HFC costs

Range of refrigerant costs



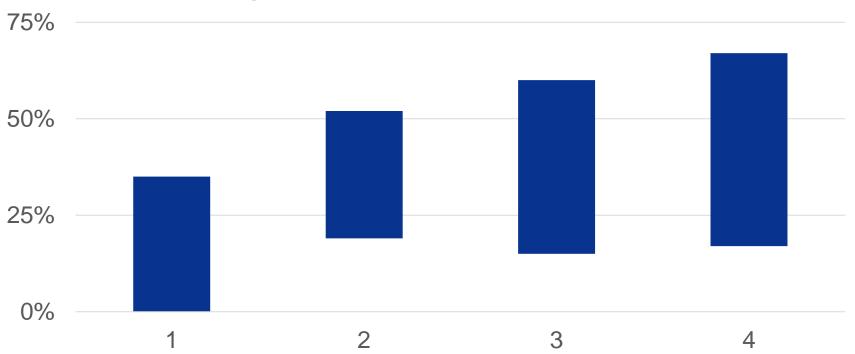
Will the cost of low GWP refrigerants come down?


Yes, except...not to the level of today's refrigerants

- Low-GWP refrigerants are described by the refrigerant manufacturers as more complex and larger molecules...
 - 1. Larger molecules = more material = higher cost
 - More complex = more complex production and more steps = higher cost

On average refrigerant costs will rise due to a refrigerant transition if HFC availability is restricted and the market is forced to fundamentally higher cost alternatives

R-134a


HFO example

How does refrigerant choice impact the cost of the equipment?

Refrigerant choice can drive component size to off-set less desirable refrigerant properties

NOTE: equipment configurations are for the same customer specified performance (capacity and efficiency)

How does refrigerant choice impact my operating costs?

A refrigerant choice based on GWP has many hidden costs to the owner

Energy

- As a "drop-in" most refrigerants yield lower performance vs.
 HFC...less efficient means higher energy costs
- Energy can be offset by buying more expensive (higher efficiency) equipment...but HFC would show the same benefits

Safety Precautions

 Many alternatives are flammable and require special handling and training, less common in commercial applications

Higher Expenses

- Maintenance cost increases to address any leakage and recharge of equipment
- Insurance costs due to higher risk using flammable refrigerants
- Operator training and expenses to handle flammable refrigerants

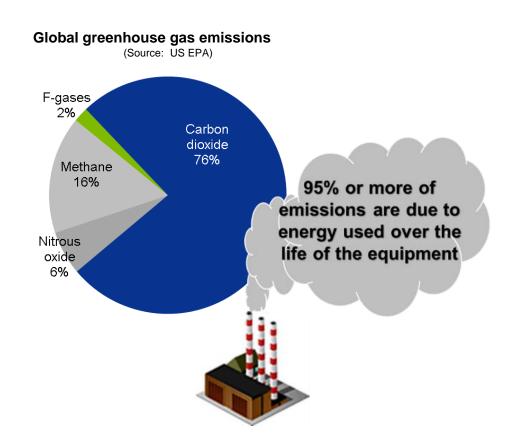
I am willing to pay a premium to improve my carbon footprint and reduce greenhouse gas emissions.

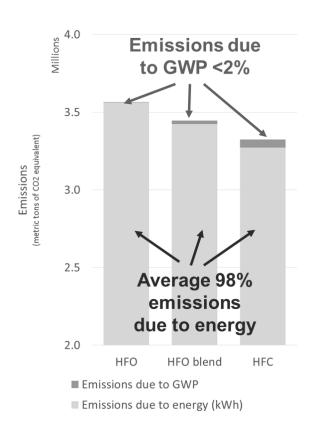
So what's my best choice?

Greenhouse gas emissions or carbon footprint can be measured through equipment life-cycle climate performance

Energy
consumption
driven by burning
of fossil fuels
(indirect impact)

Leakage of refrigerant over the life of the equipment (direct impact)




TOTAL equivalent greenhouse gas emissions

What has the greatest impact on the environment? Refrigerant GWP or Emissions?

Most electricity consumed by the chiller is produced by burning fossil fuels

1% improvement on chiller efficiency

63% refrigerant GWP reduction vs. R-134a

1.6% improvement on chiller efficiency

Off-sets R-134a direct emissions completely

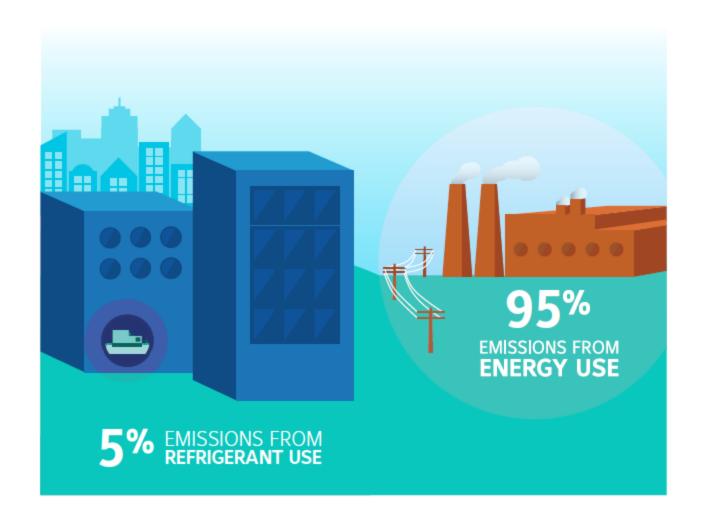
Alternatives come at a significant premium and do not provide the same benefits

Defrivement	Selection Criteria							
Refrigerant	Availability	Environment	Efficiency	Flammability	Cost			
HFC*	Readily available throughout the world in local distribution networks	Lower energy consumption results in lowest net CO2 emissions	Highest efficiency	Non-flammable (A1)	Lowest refrigerant cost and lowest cost to operate			
HFC/HFO Blend	Availability is an operating risk. Limited capacity & distribution but expanding	Low-GWP	Neutral to 5% lower efficiency	Non-flammable (A1)	 Refrigerant 5X or higher than base HFC Product cost 15-25% higher 			
HFO	Availability is an operating risk. Limited capacity & distribution but expanding	Single-digit GWP	Neutral to approx. 10% less efficient	Flammable (A2L)	 Refrigerant 5X or higher than base HFC Product cost 20-50% higher 			

^{*} Analysis assumes R-134a for a baseline due to its market significance in usage and acceptance.

I am willing to pay a premium for low-GWP at the same performance.

So what's my best choice?



A premium is best invested in improving the chiller and/or building system performance

	Chiller Price Premium								
Refrigerant	0%	1-15%	15-25%	25-40%	40-50%	50%+			
HFC	Base Unit	Invest in higher chiller & system performance							
HFC/HFO blend	Not available Base unit performance		Invest in higher chiller & system performance						
HFO	Not available			Select models may meet base chiller performance	Base unit chiller performance	Invest in higher chiller & system performance			

Consider the bigger picture

