A Path to Neutrality – Princeton University Infrastructure Master Plan

Ted Borer, PE
Justin Grissom, PE

CampusEnergy2019
February 26 - March 1, 2019
Utility System Key Attributes

- Chilled Water – 20,000 Tons
- Steam – 300,000 PPH
- Power Generation (CHP) – 15 MW
- Power Generation (Solar) – 4.5 MW (AC)
- Chilled Water TES – 40,000 Ton-Hours
- Chilled Water and Steam Piping – 70,000 LF
PRINCETON UNIVERSITY OVERVIEW

EXISTING WEST PLANT SITE

PROPOSED NEW EAST PLANT SITE
UTILITY AND ENERGY INITIATIVES

Recent Energy Conservation Modifications:

• CHW Pumps converted to high efficiency
• VFDs on CHW and Condenser Water Pumps
• VFD on Turbine Enclosure Fan
• Re-circuit chiller condenser water to series flow
• Energy studies & retrofits, re-commissioning
• Review & re-tune building energy controls
• > 100,000 lamp/fixture replacements with LEDs
ELECTRICAL CONSUMPTION
CHILLED WATER CONSUMPTION
CAMPUS ENERGY USE INTENSITY
REDUCED GHG EMISSIONS
INFRASTRUCTURE MASTER PLANNING

Primary Issues Addressed

• Capacity
• Reliability and Resiliency
• Future Load Growth
• Heating Hot Water Conversion
• GHG Emissions Reduction
• Financial Stewardship
INFRASTRUCTURE MASTER PLANNING

Infrastructure/Utility Drivers

• Aging/inefficient infrastructure
• Steam >100 years with serious degradation
• CHP core engine reaching obsolescence
• Several chillers are 1960s and 1970s vintage
• Increasing interest in water stewardship
• Limited real-estate in suburban environment
INFRASTRUCTURE MASTER PLANNING

The 2026 Campus Plan – *Next 10 Years in 30 Year Context*

- 10% Undergraduate Increase
- Expansion and Enhancement of Educational Mission
- Collaboration with Corporate and Non-Profit to Serve Teaching and Research
INFRASTRUCTURE MASTER PLANNING

The 2026 Campus Plan – Impacts to Utility Infrastructure

• Campus Growth – 812,400 GSF
• Heating – 17.4 MMBTU/hr
• Cooling – 2,300 Tons

Unmitigated Impacts from Growth

• GHG – 1,446 MTCO$_2$e annually
• Water – 16.8 MGal annually
IMP STEPS – OUR PROCESS

Master Planning Approach

• Part of a Large, Multidiscipline Campus Plan
• Strategic Framework - Goals and Priorities
• Steering Committees/Advisory Groups
 ▶ Staff and Students
 ▶ Industry Leaders
 ▶ Peer Institutions
 ▶ Local Community
IMP STEPS – OUR PROCESS

PHASE 1

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Hot Water Conversion</th>
<th>Heat Recovery</th>
<th>Geoexchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Baseline with Solar PV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Baseline with Electricity Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>Baseline with Biofuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HHW Conversion with HHW Generators</td>
<td>Heat-Pump Chillers w/o Geo-exchange</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>HHW Conversion with Solar Thermal</td>
<td>Heat-Pump chillers w/o Geo-exchange and Additional TES</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Heat-Pump Chillers w/o Geo-exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>Heat-Pump Chillers w/o Geo-exchange and Additional TES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Heat-Pump Chillers with Geoexchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>Heat-Pump Chillers with Geoexchange and Polar PV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>Heat-Pump Chillers with Geoexchange and Electricity Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td>Heat-Pump Chillers with Geoexchange and Solar Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>Heat-Pump Chillers with Geoexchange and Additional CHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>Heat-Pump Chillers with Geoexchange and Additional CHP with Biofuels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On-Site Generation
- EGS – Power
- Biodiesel CHP – unfired
- Biomass to Boiler then to Condensing STG
- Biomass Gasified to GTG
- NG Combined Cycle with BPT
- NG CHP
IMP STEPS – OUR PROCESS

PHASE 2

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Heat Recovery</th>
<th>Geoexchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>3 Heat-Pump Chillers w/o Geoexchange</td>
<td>4 Heat-Pump Chillers with Geoexchange</td>
</tr>
<tr>
<td>1B</td>
<td>Baseline with Electricity Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>Baseline with Biofuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Heat-Pump Chillers with Geoexchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>Heat-Pump Chillers with Geoexchange and Electricity Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>Heat-Pump Chillers with Geoexchange and Additional CHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>Heat-Pump Chillers with Geoexchange and Additional CHP with Biofuels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMP STEPS – OUR PROCESS

PHASE 3

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Geoexchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Baseline</td>
<td>Heat-Pump Chillers with Geoexchange</td>
</tr>
</tbody>
</table>

* PV/Biofuels applied to all options
Final Recommendations

- Conversion from steam to hot water heating
- New 6,800 ton heat pump chiller East Plant
 - Designed for future expansion
 - No combustion/no cooling towers
- New heating hot water capacity at West Plant
- New heating hot water distribution network
- Installation of geoexchange well fields
- Hot and cold TES
Key Impacts of IMP by 2026:

- 380,000 MMBTU reduction in natural gas consumption
- 1.6 MW increase in peak electrical load
- 58.7 MGal annual reduction in domestic water consumption
- 20,000 MTCO$_2$e annual reduction in GHG emissions
NEXT STEPS

Communicate and Sell the Plan!
► Finance, Administration, Campus Community

Implement Capital Projects
► Near-Term Projects are First Priority

Adjust Plans and Priorities as appropriate
► UMPs must be kept current and relevant
► Update UMP every five years
LESSONS LEARNED

- Thermal storage can maximize flexibility and minimize costs
- Maximize efficiency and energy source flexibility with CHP
- PPAs can be a cost effective GHG reduction measure
- Hot water heating provides substantial benefits
- Building conversions represent a large investment
- Phased conversion can ease campus burden and prevent overbuilding
- Value real estate in “3-D”
- CO$_2$ neutrality through on-campus means is a challenge
PROGRESS UPDATE

IMP Project Implementation

• Planning team selected for design
• Currently in early design phase
• Building conversion investigations – How Low Can You Go?

Increased Renewable Procurement

• On site and off site
• Solar