A Path to Neutrality – Princeton University Infrastructure Master Plan

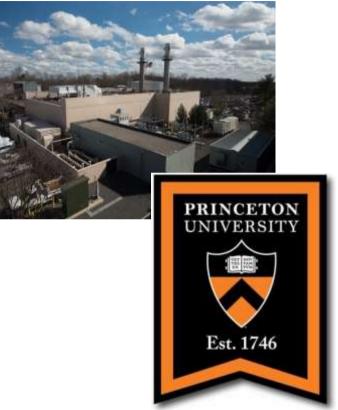
Facilities

MCDONNELL

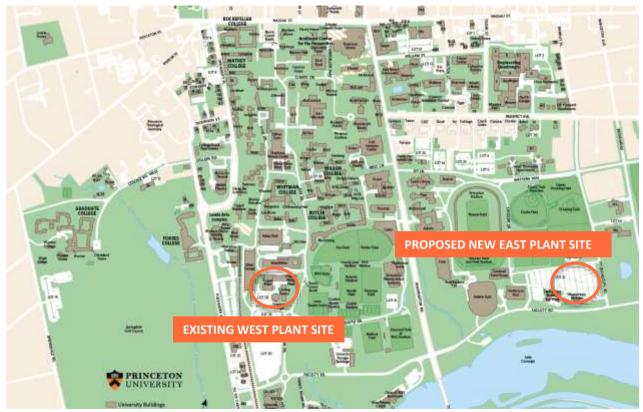
Engineering

BURNS

Ted Borer, PE Justin Grissom, PE


CampusEnergy2019 February 26 - March 1, 2019

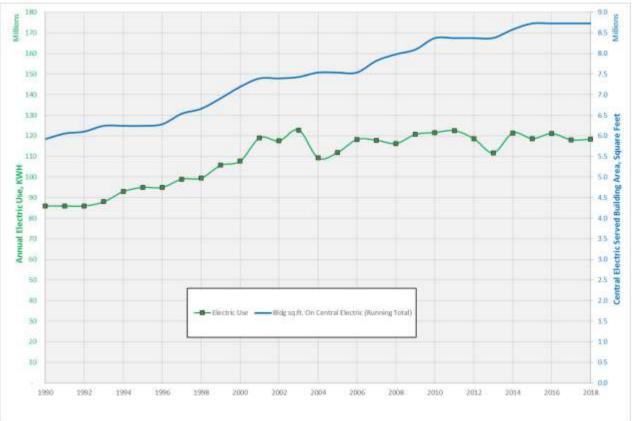
PRINCETON UNIVERSITY OVERVIEW


Utility System Key Attributes

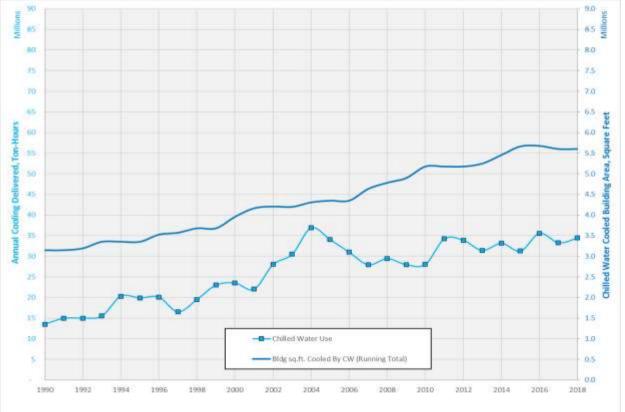
- Chilled Water 20,000 Tons
- Steam 300,000 PPH
- Power Generation (CHP) 15 MW
- Power Generation (Solar) 4.5 MW (AC)
- Chilled Water TES 40,000 Ton-Hours
- Chilled Water and Steam Piping 70,000 LF

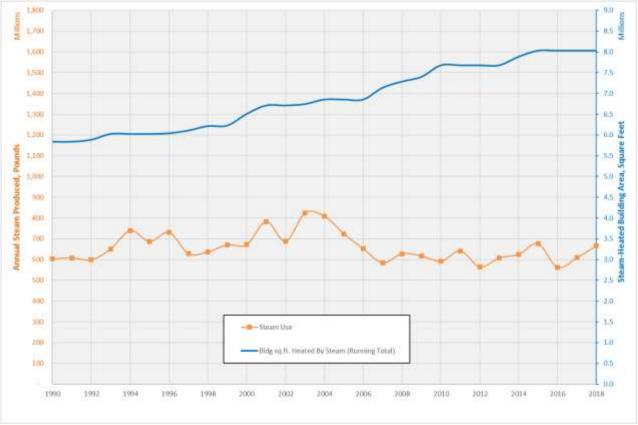
PRINCETON UNIVERSITY OVERVIEW

UTILITY AND ENERGY INITIATIVES


Recent Energy Conservation Modifications:

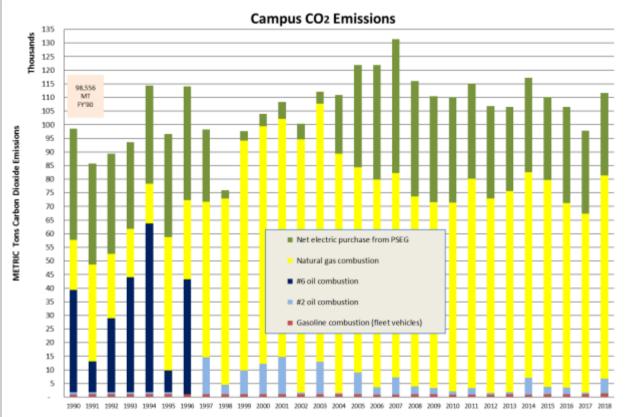
- CHW Pumps converted to high efficiency
- VFDs on CHW and Condenser Water Pumps
- VFD on Turbine Enclosure Fan
- Re-circuit chiller condenser water to series flow
- Energy studies & retrofits, re-commissioning
- Review & re-tune building energy controls
- > 100,000 lamp/fixture replacements with LEDs




ELECTRICAL CONSUMPTION

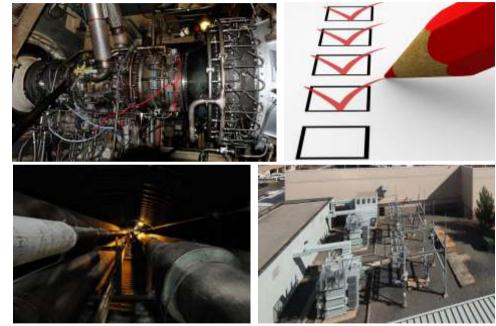
CHILLED WATER CONSUMPTION

STEAM CONSUMPTION



BURNS

CAMPUS ENERGY USE INTENSITY

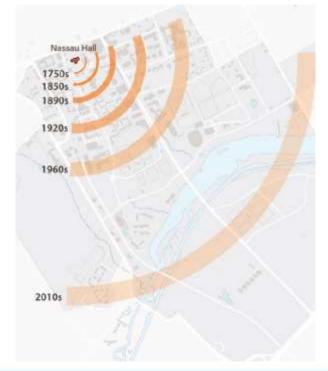


REDUCED GHG EMISSIONS

Primary Issues Addressed

- Capacity
- Reliability and Resiliency
- Future Load Growth
- Heating Hot Water Conversion
- GHG Emissions Reduction
- Financial Stewardship

Infrastructure/Utility Drivers


- Aging/inefficient infrastructure
- Steam >100 years with serious degradation
- CHP core engine reaching obsolescence
- Several chillers are 1960s and 1970s vintage
- Increasing interest in water stewardship
- Limited real-estate in suburban environment

The 2026 Campus Plan – Next 10 Years in 30 Year Context

- 10% Undergraduate Increase
- Expansion and Enhancement of Educational Mission
- Collaboration with Corporate and Non-Profit to Serve
 - Teaching and Research

The 2026 Campus Plan – Impacts to Utility Infrastructure

- Campus Growth 812,400 GSF
- Heating 17.4 MMBTU/hr
- Cooling 2,300 Tons

Unmitigated Impacts from Growth

- GHG 1,446 MTCO₂e annually
- Water 16.8 MGal annually

IMP STEPS – OUR PROCESS

Master Planning Approach

- Part of a Large, Multidiscipline Campus Plan
- Strategic Framework Goals and Priorities
- Steering Committees/Advisory Groups
 - Staff and Students
 - Industry Leaders
 - Peer Institutions
 - Local Community

IMP STEPS – OUR PROCESS PHASE 1

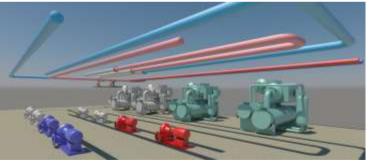
Baseline		Hot Water Conversion		Heat Recovery		Geoexchange		On-Site Generation	
1	Baseline	2	HHW Conversion with HHW Generators	3	Heat-Pump Chillers w/o Geo-exchange	4	Heat-Pump Chillers with Geoexchange		
1A	Baseline with	24	HHW Conversion	24	Heat-Pump chillers	4A	Heat-Pump Chillers with	EGS – Power Biodiesel CHP – unfired	
	Solar PV	2A	with Solar Thermal	3 A	w/o Geo-exchange and Additional TES	44	Geoexchange and Polar PV		
1B	Baseline with					4B	Heat-Pump Chillers with Geoexchange	Biomass to Boiler	
	Electricity Storage						and Electricity Storage	then to Condensing STG	
1C	Baseline with Biofuels					4C	Heat-Pump Chillers with Geoexchange and Solar Thermal	Biomass Gasified to GTG	
						4D	Heat-Pump Chillers with Geoexchange and Additional CHP	NG Combined Cycle with BPT	
						4E	Heat-Pump Chillers with Geoexchange and Additional CHP with Biofuels	NG CHP	

IMP STEPS – OUR PROCESS PHASE 2

	Baseline		leat Recovery	Geoexchange				
1	Baseline	3	Heat-Pump Chillers w/o Geoexchange	4	Heat-Pump Chillers with Geoexchange			
1B	Baseline with Electricity Storage			4 B	Heat-Pump Chillers with Geoexchange and Electricity Storage			
1C	Baseline with Biofuels			4D	Heat-Pump Chillers with Geoexchange and Additional CHP			
				4E	Heat-Pump Chillers with Geoexchange and Additional CHP with Biofuels			
1	Baseline	3	Heat-Pump Chillers w/o Geoexchange	4	Heat-Pump Chillers with Geoexchange			

IMP STEPS – OUR PROCESS

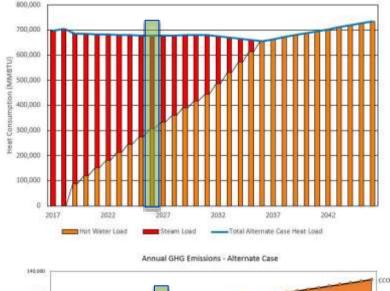
* PV/Biofuels applied to all options

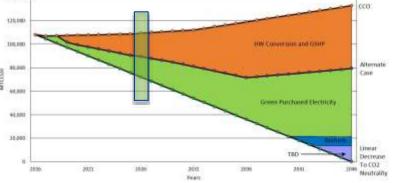


IMP STEPS – OUR PROCESS

Final Recommendations

- Conversion from steam to hot water heating
- New 6,800 ton heat pump chiller East Plant
 - Designed for future expansion
 - No combustion/no cooling towers
- New heating hot water capacity at West Plant
- New heating hot water distribution network
- Installation of geoexchange well fields
- Hot and cold TES





ENERGY AND GHG SAVINGS

Key Impacts of IMP by 2026:

- 380,000 MMBTU reduction in natural gas consumption
- 1.6 MW increase in peak electrical load
- 58.7 MGal annual reduction in domestic water consumption
- 20,000 MTCO₂e annual reduction in GHG emissions

NEXT STEPS

Communicate and Sell the Plan!

Finance, Administration, Campus Community

Implement Capital Projects

- Near-Term Projects are First Priority
- Adjust Plans and Priorities as appropriate
 - UMPs must be kept current and relevant
 - Update UMP every five years

LESSONS LEARNED

- Thermal storage can maximize flexibility and minimize costs
- Maximize efficiency and energy source flexibility with CHP
- PPAs can be a cost effective GHG reduction measure
- Hot water heating provides substantial benefits
- Building conversions represent a large investment
- Phased conversion can ease campus burden and prevent overbuilding
- Value real estate in "3-D"
- CO₂ neutrality through on-campus means is a challenge

PROGRESS UPDATE

IMP Project Implementation

- Planning team selected for design
- Currently in early design phase
- Building conversion investigations How Low Can You Go?

Increased Renewable Procurement

- On site and off site
- Solar

