Using CHP to Convert Campus Steam Systems to Hot Water Systems

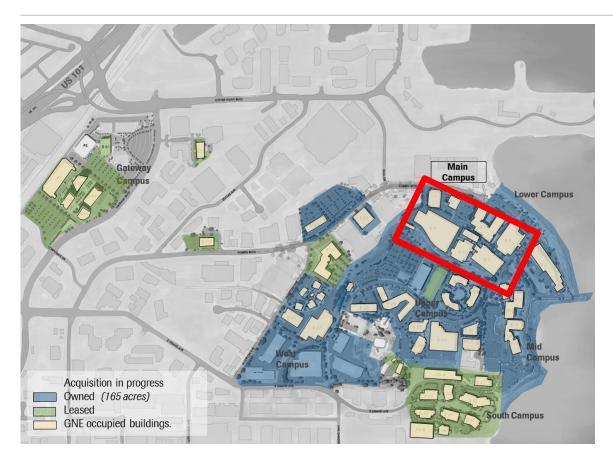
Presented by:

Michael Morehead - Genentech Bryce MacMartin - Vanderweil Power Group

February 2016

Agenda

The Challenges


- Existing Campus Steam Distribution System
- High Steam Consumption for Mild Climate
- Corporate Energy Efficiency Goals

12 The Solution Approach

- Utility Reduction Goals
- Project Drivers
- Load Assessment Analysis
- System/Technology Options Evaluation

03 Recommended System and Conclusions

Northern California Biotech Campus

61 Total Campus Buildings Control Over 5.3 MSF of Facilities 165 Acres Owned

Multi-use Campus

- Research
- Production/Manufacturing
- Office Space
- Corporate Headquarters

Campus Utility Hub

RED = STEAM ORANGE = HOT WATER

Campus Energy Opportunities

- Mild Climate
- Campus Efficiency Improvement Potential
- High Cost of Electricity 190,000,000 kWh annually = **\$26M+**
- Low Cost of Natural Gas for the Foreseeable Future
- Organic Campus Growth Lack of Centralization
- Steam System Oversized & Serves Space Heating Loads
- Resiliency & Reliability is of Utmost Importance
 - High-value research and production facilities
 - Seismic zone

Utility Project Drivers

Corporate Directive / Mandate

- Cost-effective Energy Conservation Measures (ECMs)
- Annual & Short-Term (2020) Utility Usage Reduction Goals
- Optimize and Utilize Existing Assets
- Use Total Cost of Ownership (TCO) as Basis

Existing Steam Distribution System

- Central Steam Plant with three (3) 80,000 pph boilers
- Steam production averages ~35,000 pph, peak ~60,000 pph
 - Good metering data for steam production
- Steam distribution system serves five (5) production & manufacturing buildings
 - Serving both process and HVAC loads
 - Steam to hot water heat exchangers for building hot water systems
 - Limited metering data on building demand-side systems
 - Concern of high steam use excessive reheat/preheat?
- Local hot water boilers in most remaining campus buildings
 Large stand-alone HW boilers in two buildings in close proximity

Goals for Project Team

- Evaluate "Self-Generation"
 - Reduce annual electric utility costs
 - Improve system efficiency
 - Reduce global carbon generation
 - Increase resiliency
- Reduce Steam Use
 - Utilize waste heat associated with "self-generation"
 - Identify and evaluate hot water vs. steam systems in buildings
 - Understand demand-side loads of HW & steam systems
- Meet the NPV & TCO Financial Goals of Energy Projects

Challenges for Project Team

- High Cost of Capital Projects and Labor in Area
- Organic Campus / Site Development Over Time
 - Lack of distribution infrastructure and centralization
 - Spread-out, suburban campus with 100 ft+ elevation changes
 - Sub-campuses with distinctly different load profiles/needs
- Limited (but Improving) Metering Data
- Plan for Future Steam Reductions
- Site Master Planning / Limited Space Available

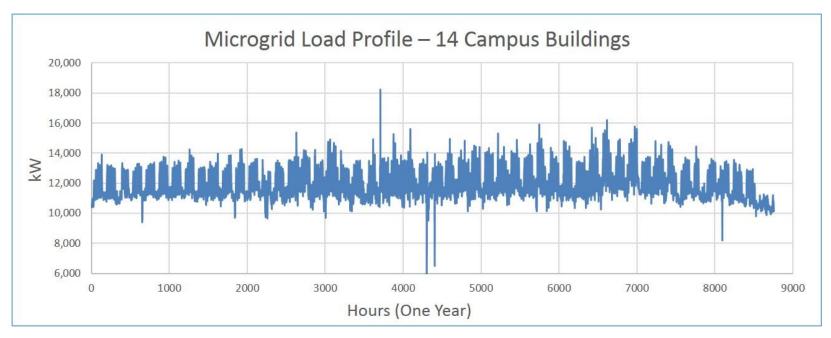
Utility System Upgrade Approach

Develop Options

- Screen Self-Generation Technologies
- Existing Steam vs. New Hot Water Distribution
- Microgrid Distribution

Evaluation / Selection

- Local and Global System Efficiency Calculations
- Operational Cost/Savings Modeling
- NPV/TCO Financial Analysis


Load Development - Electrical

Quality Existing Data

- Electrical data repository available by building (hourly)
- Local Utility electrical data also available by meter (5 min)

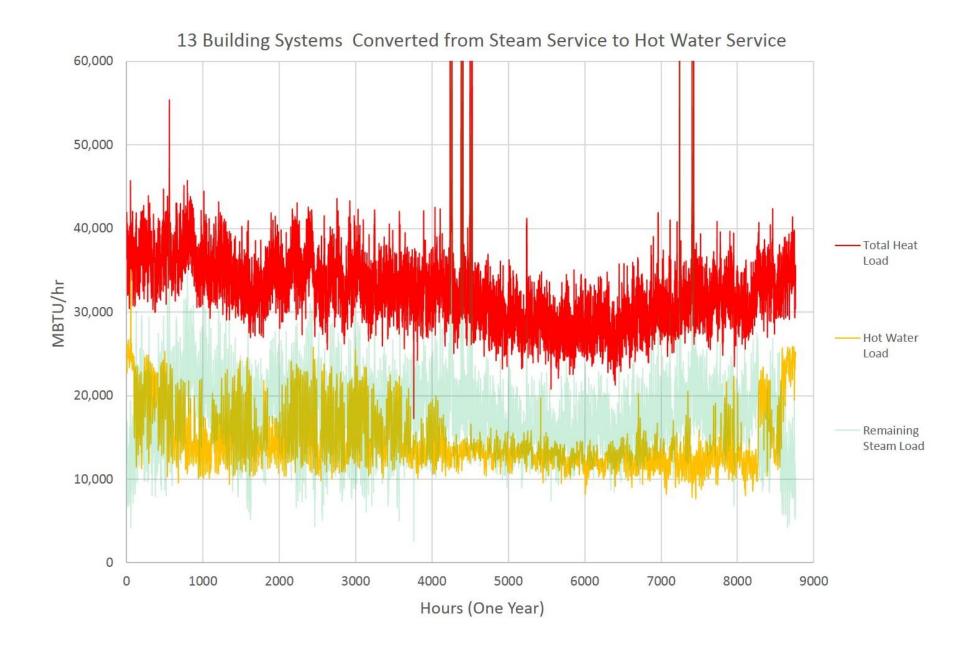
Evaluation

- Understanding of different building rate tariffs (3 different)
- Building aggregation options to determine best Microgrid approach

Load Development – Steam & Hot Water

Existing Data

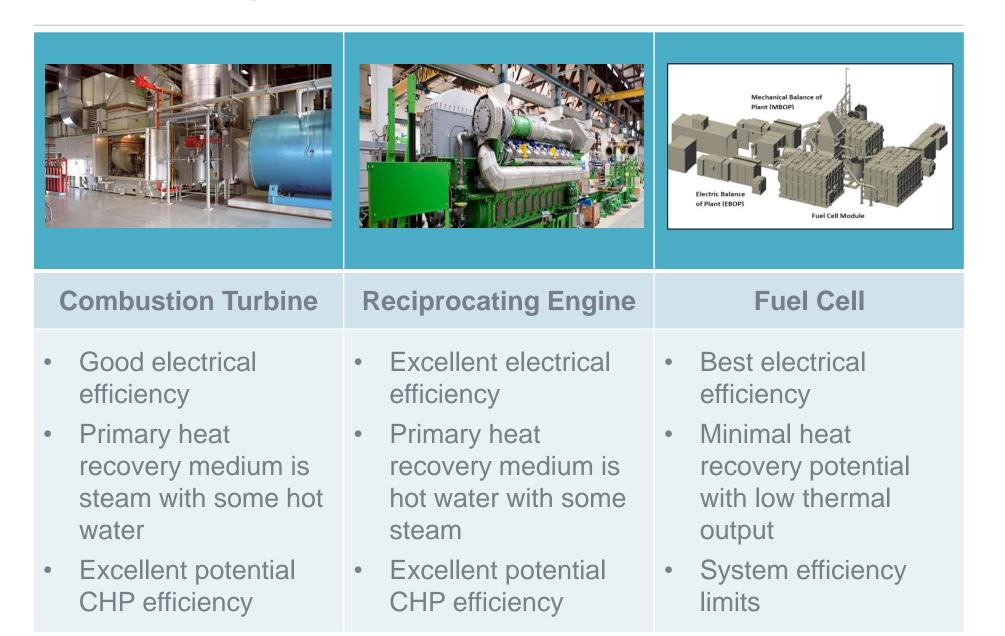
- Central steam boiler production data (15 min)
- Local hot water boiler production data (15 min)
- Monthly gas usage for all boilers (calibration)

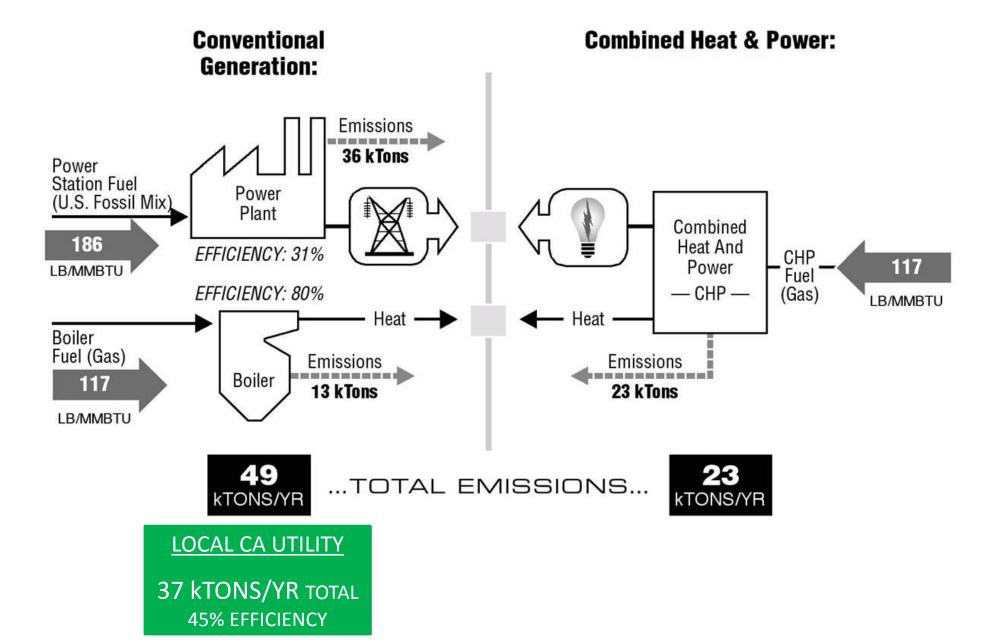

Data Challenges

- Limited demand-side data for building systems (steam or HW)
- Temporary metering required
- Scaled and normalized yearly profiles created

Evaluation

- Determine building conversion feasibility Steam → Hot Water
- Cost of connection vs. load for financial justification (steam offset)

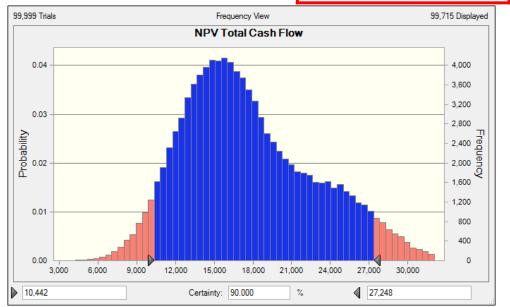

Steam & Hot Water Load Profiles


Technology / Self-Generation Options

- Thermal System ECM's
 - Ongoing efficiency and sustainability efforts
 - Minimal impact on achieving corporate goals
- CHP Options
 - Flexible mix of electrical and thermal production available
 - Most efficient if waste heat energy fully utilized
 - Requires new Microgrid and HW distribution
- Fuel Cell Options
 - Electrical production only, Very low thermal
 - System sizing and scale-up flexibility
 - Procurement/installation flexibility
 - Federal 30% ITC significant impact on Proforma

Technology Options Evaluation

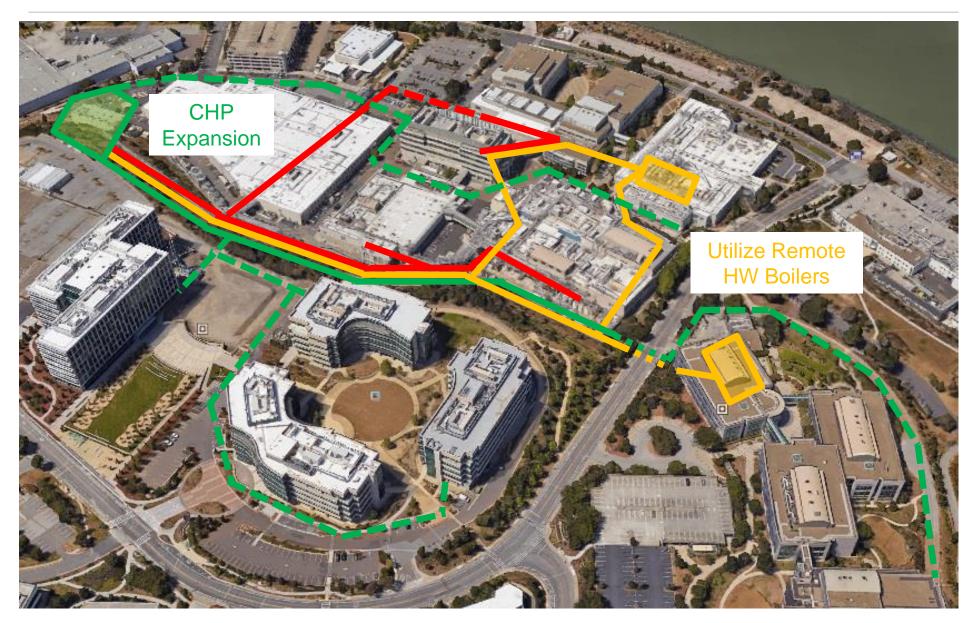
Environmental Benefits of CHP CO₂ Emissions Reductions



Four Primary Technology Options

B9A CHP Technical Assessment	Units	Case 1	Case 2	Case 3	Case 4				
Technology		Large Turbine	Large Recip Eng.	Fuel Cell	Small Turbine				
CONFIGURATION									
Electricity Steam 160-180°F Hot Water (HHW)	MW Ibs/hr MMBtu/hr	7.4 36.6k 7.2	8.4 9.3k 15.8	7.4 N/A 3.8	4.3 15.3k 4.8				
Use of Power Use of Steam Use of High Temp Hot Water		LC + FRCs LC + ARU FRC1	LC + FRCs LC Steam Off Set	LC + FRCs N/A FRC1	LC ONLY LC FRC1				
PERFORMANCE									
Total System Fuel Required	MMBtu/yr	1,048,000	961,000	1,089,000	1,106,000				
Total System Energy Efficiency	%	67.0%	69.7%	60.4%	58.5%				
Carbon Emissions (PG&E marginal)	mTon/yr	55.8	52.1	60.6	60.1				
Capital	\$M	\$69.7	\$66.4	\$67.5	\$51.3				
Estimated Savings	\$M/yr	\$5.41	\$5.42	\$2.45	\$2.70				
ASSESSMENT									
Rank: Case 2 and 4 – further analysis Case 1 and 3 – deleted		# 3 Highest cost Equal savings Less efficient Too much heat	#1 Better cost Best savings High efficiency Good fit	#4 High cost Lowest savings Low efficiency Not a good fit	#2 Lowest cost Low savings Low efficiency (grid purchase) Lower output				

TCO/NPV Analysis


CHP Financial Analysis	Case 2	Case 4
	Recip Engine	Merc-50
FIRST COST	\$67.9M	\$51.3M
OPERATING COST (in \$ 2015)	\$13.0M/yr	\$15.5M/yr
Utilities (Gas & Power)	\$9.6M/yr	\$13.2M/yr
Labor & Overhead	\$3.4M/yr	\$2.3M/yr
SAVINGS (\$ 2015)	\$5.1M/yr	\$2.8M/yr
TOTAL COST OF OWNERSHIP (NPV)	\$11.2M	(\$11.4M)

Recommended System Approach

- 1. Reciprocating Engine (GEJ-920) CHP Prime Mover
 - Electrical efficiency (49%+)
 - Waste heat is good fit for campus loads
- 2. New Microgrid and Hot Water Distribution Systems
 - Connect 14 buildings to Microgrid
 - Convert 13 building systems from steam to hot water connections
- 3. New Right-Sized Steam Generation Assets
 - Supplemental steam production for reduced steam demand
 - Add quick start, high efficiency smaller steam boilers for improved load following
- 4. Utilization of Existing Local HW Generation Assets
 - Supplemental hot water production for large load periods

CHP & Microgrid System Recommendation

RED = STEAMORANGE = HOT WATERGREEN = MICROGRID

Recommended System Approach

	Units	System Options			
Energy Analysis		BAU (No CHP)	Recip Engine CHP (8.2 MW Net)	Recip Engine CHP (9.0 MW Net)	
CHP Efficiency	%	N/A	73.2%	72.6%	
Overall System Efficiency	%	53.5%	68.3%	69.4%	
Annual Carbon Production (includes Utility Carbon)		71,400	55,300	54,500	
Annual Savings		BAU (No CHP)	Recip Engine CHP (8.2 MW Net)	Recip Engine CHP (9.0 MW Net)	
Total Savings (Direct Access)	\$M/yr	\$0.00	\$5.9	\$6.1	
Total Savings (Primary Rate)	\$M/yr	\$0.00	\$4.4	\$4.7	

Conclusions & Lessons Learned

- Increased efficiency
- Global carbon reduction
- Utility cost savings
- Increased resiliency and reliability of campus utilities

- Demand-side load investigation
- Additional metered data early and more in-depth

Questions & Answers