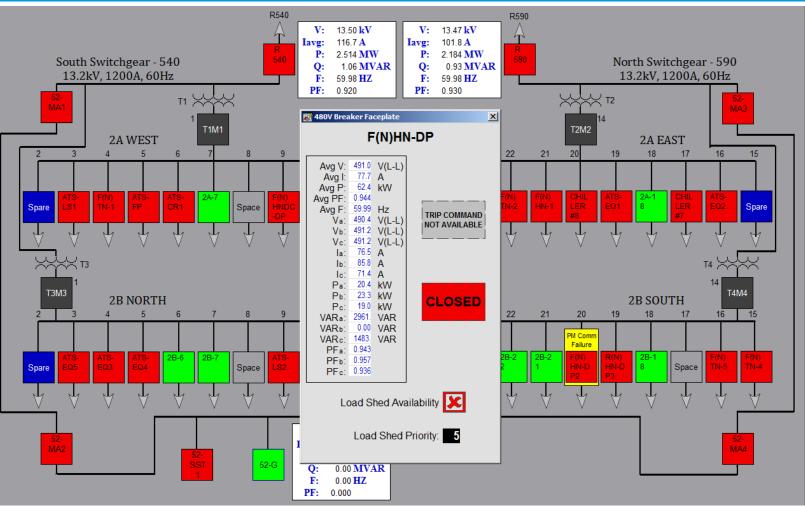
Load Management Systems Critical Equipment for Successful CHP Projects

Presented by CHA Consulting, Inc. Saqib Khattak, PEng, MEng Section Manager- High Voltage Electrical Group



Overview

The following control are available through the HMI:

- Import / export control
- Emergency load shedding
- Under frequency load shedding
- Manually initiated automatic synchronization
- Automatic bus transfer
- Distribution system monitoring

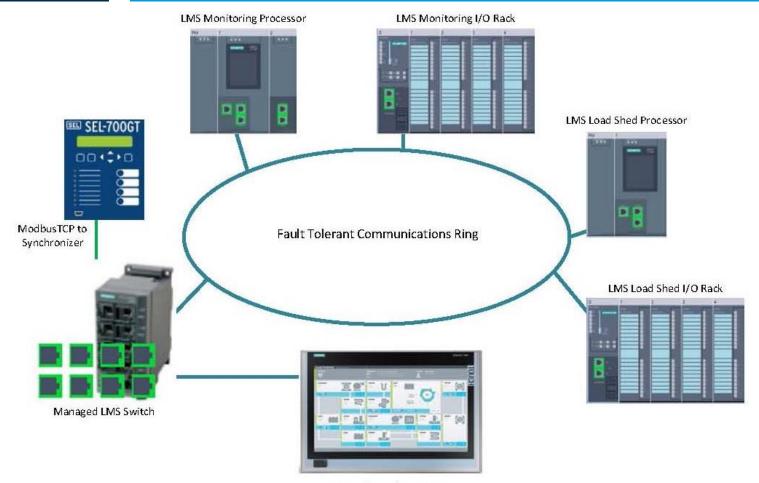
Overview

The following control are available through the HMI:

- Tap changer and protective relay control
- Spinning reserve calculations
- Topology management
- Communications
- General display functionality
- Alarm logging

Latest Event		vent Description: Los ed Event Cause: 734		
Event Timestamp: M D Y 03 / 27 / 2014 H M S uS 02 : 34 : 27 : 040330	T	ctual Load Shed: 0.4 otal Facility Use: 4.6 Total Import: 1.6 cility Generation: 3.0	800 MW 800 MW	
2A-3 ATS-LS1:	5.0 kW	2B-3 ATS-EQ	5: 16.0	kW
2A-4 F(N)TN-1:	2.0 kW	2B-4 ATS-EQ	3: 14.0	kW
2A-5 ATS-FP:	3.0 kW	2B-6 ATS-EQ	4: 15.0	kW
2A-6 ATS-CR1:	4.0 kW	2B-9 ATS-LS	2: 11.0	kW
2A-9 F(N)HNDC-DP:	12.0 kW	2B-10 ATS-CR	3: 13.0	kW
2A-10 ATS-CR2:	24.0 kW	2B-15 F(N)TN-	4: 18.0	kW
2A-13 F(N)HN-DP:	1.0 kW	2B-16 F(N)TN-	5: 19.0	kW
2A-16 ATS-EQ2:	8.0 kVV	2B-19 R(N)HN-DP	3: 17.0	kW
2A-17 CHILLER #7:	9.0 kVV	2B-20 F(N)HN-DP	2: 21.0	kW
2A-19 ATS-EQ1:	6.0 kVV	2B-23 F(N)TN-	6: 20.0	kW
2A-20 CHILLER #8:	23.0 kW			
2A-21 F(N)HN-1:	7.0 kW			
2A-22 F(N)TN-2:	10.0 kW			
2A-23 CHILLER #9:	22.0 kW			

Sequ	ience of Ev	vents	ENABLE	D Event #1: LOSS OF	UTILITY R540
			ENABLE	D Event #2: LOSS OF	UTILITY R590
			ENABLE	D Event #3: LOSS OF	GTG
) Trouble		Previous Eve		Event Description:Loss thed Event Cause:734-2	
		Event Timestamp: M D Y 03 / 27 / 2014	Total	Actual Load Shed: 0.400 Total Facility Use: 4.800 Total Import: 1.800	MW
		H M S uS 02 : 34 : 21 : 040365	PM Total F	acility Generation: 3.000	
W		2A-3 ATS-LS1:	5.0 kW	2B-3 ATS-EQ5:	16.0 kW
W		2A-4 F(N)TN-1:	2.0 kW	2B-4 ATS-EQ3:	14.0 kW
W		2A-5 ATS-FP:	3.0 kW	2B-6 ATS-EQ4:	15.0 kW
W		2A-6 ATS-CR1:	4.0 kW	2B-9 ATS-LS2:	11.0 kW
W		2A-9 F(N)HNDC-DP:	12.0 kW	2B-10 ATS-CR3:	13.0 kW
αW		2A-10 ATS-CR2:	24.0 kW	2B-15 F(N)TN-4:	18.0 kW
αW		2A-13 F(N)HN-DP:	1.0 kW	2B-16 F(N)TN-5:	19.0 kW
άW		2A-16 ATS-EQ2:	8.0 kVV	2B-19 R(N)HN-DP3:	17.0 kW
W		2A-17 CHILLER #7:	9.0 kW	2B-20 F(N)HN-DP2:	21.0 kW
W		2A-19 ATS-EQ1:	6.0 kW	2B-23 F(N)TN-6:	20.0 kW
		2A-20 CHILLER #8:	23.0 kW		
		2A-21 F(N)HN-1:	7.0 kW		
		2A-22 F(N)TN-2:	10.0 kW		
		2A-23 CHILLER #9:	22.0 kW		

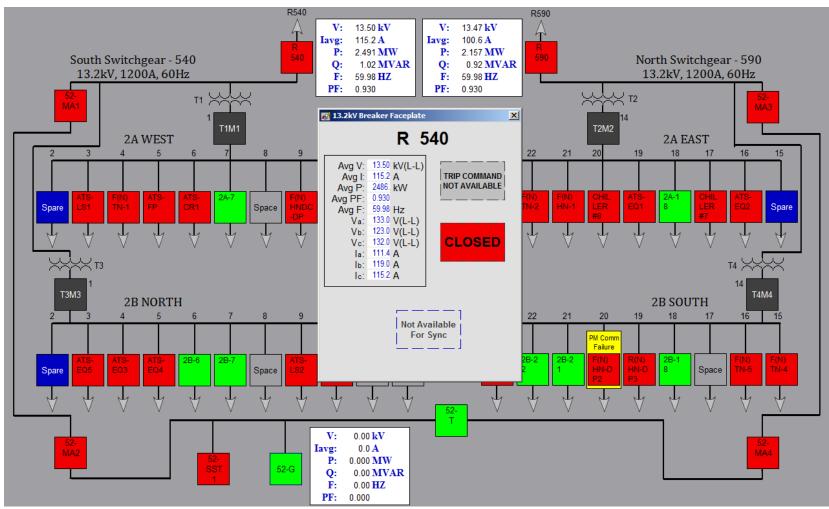

Communications

- All the protective relays and Metering devices are connected to the LMS via Ethernet switch
- EtherNet/IP is used for communication between the LMS monitoring controller, local HMI, Generator control system, and the remote I/O rack.
- The LMS system communicates to various kinds of power meters over Modbus RS485. to report apparent power, active power, reactive power, power factor, voltages, currents, and frequencies
- Modbus is an open Master/Slave application protocol that can be used on several different physical layers. Modbus-TCP means that the Modbus protocol is used on top of Ethernet-TCP/IP. The LMS communicates to modern SEL/GE etc. devices through this protocol.
- The ControlNet network allows the monitoring and load shed processors to communicate with each other

Typical System Architecture

LMS Local Touchscreen HMI

Synchronization


- Synchronizer can be a SEL 700GT or a CGCM (Combination Generator Control Module)
- One synchronizer can synchronize multiple breakers.
- Synchronization of multiple breakers can be achieved via drive relays and feed the synchronizer with the PTs associated to the synch. breaker.
- Sync Voltage High/ Low Limit (1 % Typical)

- Frequency Match Error Limit (+/- .04Hz Typical)
- Sync Frequency High/ Low Limit (.2 Hz/0.02Hz Typical)
- Timed Delay (5 Seconds Typical)
- Sync Phase High/ Low Limit (+5 Deg./-5 Deg. Typical)
- Phase Match Error Rate of Change Limit (1 Degree per second Typical)

Synchronization

Loadshed

- For Loadshed all the feeder breaker metering data is required.
- Loadshed happens once the facility is running in islanded operation.
- Loadshed can be frequency based or capacity based.
- The LMS will take into consideration the distribution topology so that loads that have been shed do not affect other loads on its partnered bus.

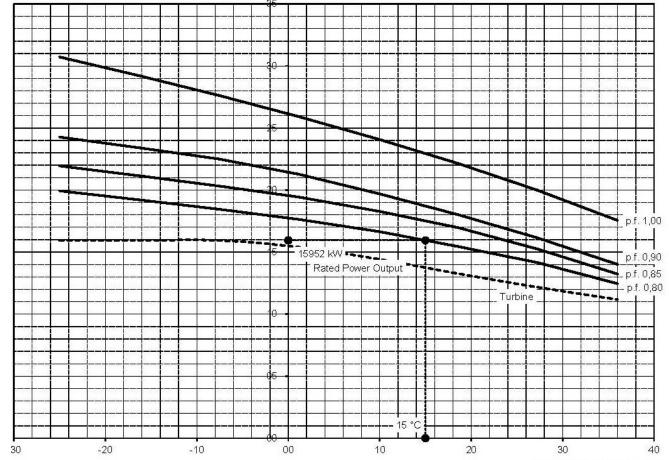
- The system topology allows the LMS to know the bus and electrical load distribution connection states.
- Various breaker statuses are monitored to determine the connection state of each load and bus.
- Loadshedding can be prioritized based on operator's selectivity and operational requirements.
- During a load shed event the LMS reacts within 38 milliseconds to shed as many loads needed to retain the configured amount of spinning reserve.

Loadshed Management

Load Shed Management

DISABLED Load Shed Master

	<u>Enable/</u> Avai	lable
Device		hed
F(N)HN-1	76.40 1 ENABLED	C
CHILLER #7	2.59 2 DISABLED	
ATS-LS2	35.86 3 ENABLED	C
ATS-EQ5	0.00 4 ENABLED	
F(N)HN-DP	64.87 5 ENABLED	C
2B-18	0.00 6 DISABLED	
ATS-EQ3	143.55 7 ENABLED	C
F(N)TN-1	16.91 8 ENABLED	
ATS-EQ4	0.00 9 ENABLED	C
ATS-FP	0.00 10 ENABLED	
ATS-CR1	45.80 11 ENABLED	C
ATS-LS1	23.40 12 ENABLED	C
F(N)TN-2	15.84 13 ENABLED	C
ATS-EQ2	111.11 14 ENABLED	C
ATS-EQ1	278.34 15 ENABLED	C
F(N)HNDC-DP	44.37 16 ENABLED	C
ATS-CR3	51.36 17 ENABLED	C
R(N)HN-DP3	0.00 18 ENABLED	C
F(N)TN-4	0.00 19 ENABLED	C
F(N)TN-6	7.52 20 ENABLED	C



Spinning Reserve

Load Shed MW =

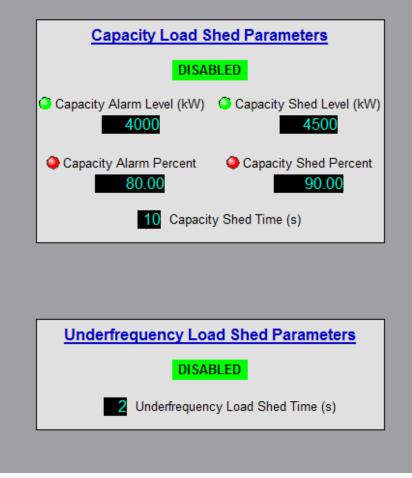
(Loss of critical source MW + GEN Power Generated) – (GEN Capacity -Spinning Reserve)

OUTPUT CHARACTERISTIC at B-rise

Ambient Air Temperature [°C]

Import Export Control

- The LMS controls the amount of import power from the utility. This utility import power is controlled by maintaining the power output of the Generator.
- The LMS compares the import power of the utility breaker with the configured deadband and will raise/lower the frequency and voltage of the Generator to regulate the import power.
- Raise and lower pulses will continue until the import power is within the specified deadband.


- In order for the raise and lower signals to control the genset, the genset must be in "remote" mode.
- Import control will not allow a kW setpoint to be less than 100 kW.
- The operator has the ability to select between import control and base-load control from the HMI. Base-load control will allow the operator to control the GTG at a constant load output

Import Export Control Screen

Ger	_	r Informa cal Mode	tion
	_	Real Power eactive Power nning Reserve	: 0.000 MVAR
Import	5.00 GT(G Capacity (N	/IW) : 2.155 MW
Control Disabled	kW	Setpoints 160.00	<u>Deadband</u> 10.00
	KVAR	0.00	10.00
% Spinning F Manually-e Spinning F Limi	entered Reserve	10.0 500.00	٢W

Thank You.

For more information, please contact:

Saqib Khattak, PEng, MEng Section Manager – High Voltage Electrical Group p. (905) 984-8383, ext. 264 e. skhattak@gryphoneng.com

