Effective Water Treatment

- Mark Ilaria, General Electric Power \& Water
- February 10, 2015

Closed Water System Guidelines

Definition of Closed Water System

- Not Open to Atmosphere
- No Water Evaporation
- Designed for Minimal (less than 1\%) water losses
- Used to transport Chilled or Heating Hot Water or both with two pipe systems
- Typically treated with higher dosage levels of chemical treatment

Still subject to corrosion and scale despite being "closed"

Corrosion Cell Reaction

Galvanic Corrosion Basics

Anodic -
More Easily Corroded
(Less Noble)
-Stainless Steel (Passive)
-Titanium
-Bronze
-Copper
-Brass
-Stainless Steel (Active)
-Cast Iron

- Mild Steel
-Aluminum
-Zinc
-Magnesium

Cathodic More Easily Protected (More Noble)

Galvanic Corrosion (COPPER INDUCED)

Galvanic Corrosion

Example - Copper Plating on Steel
$\mathrm{Fe}^{\mathrm{O}}+\mathrm{Cu}^{+2}--->\mathrm{Fe}^{+2}+\mathrm{Cu}^{\mathrm{O}}$

6 GO imagination at work

The Water Treatment Triangle

Evaporator (Chilled) Tube Design

- Enhanced on both sides
- Thinner wall thickness..
- delivers higher efficiency

- Once Corrosion/Scale/Deposition Starts........
- Insulation Effect - Scale, Fouling, Bio
- More energy to lower water temp
- Efficiency loss as high as 40\%

So Now What Do We Do?

9 GR imagination at work

The Solution

- Mechanical
- Chemical
- Operational
-Pre-Operational
- Lay-Up

NEIL YGUNG R CAAZY HOASE

The Mechanical Solution

Proper Air Removal Proper Water Velocity Seal/Valve Operation Filtration

Figure 1: Single Typical Mechonicol Shaft Seal
Coil Spring

Filtration of Closed Systems

Routine Filtration for Closed Systems

Large systems system turnover of 2 to 4 days

Variable speed pumps -
Reduce velocity Increase the tendency for deposition of debris

Greatest Impact: Enhanced Tubes

The Chemical Solution

Select program based on water chemistry and application

Create/Maintain Passive Barrier
Special attention to copper inhibitor and monitoring

Regular Water Testing and Monitoring

The Chemical Solution

Program based on water chemistry \& application

Inhibitor	Pro's	Cons
Molybdate	Effective with no breakdown	High Cost, Heavy Metal
Nitrite	Cost effective Works rapidly	Breakdown, bacterial food
Phosphate	Low Cost	Effectiveness, Precipitation
Silica	Perceived as safe	Effectiveness, scale formation
Complex phosphate	Iron and scale removal	Breakdown, bacterial food

Scale Inhibition

Solution as part of the chemical program

Ensure treatment formulation includes scale control agents

Monitor system chemistry closely
In hard water areas soften the fill/makeup water
If softened water used, review treatment chemistry

Copper Protection

Most used - azoles:
-Tolyltriazine (TTA) - most commonly use.

-Benzotriazole (BZT) - commonly used
-Halogen Resistant Azole - unique properties
Increasing levels - sulphate and chlorides

Chemically bonds with copper and copper alloys to create film, stable for 5-7 days

Complex with Cu^{+2} preventing plating subsequent aggressive pitting

Closed Water Monitoring

Check inhibitor levels, conductivity \& pH once/month

- Compare with make-up vs. inventory

Chilled Microbiological analysis monthly
Check for Chilled SRB bacteria quarterly
Inspect coupons quarterly, analyze
(Corrosion, Deposition, MB fouling)

- 0.1 mpy copper corrosion rate - critical systems
- Up to 2 mpy steel ("hard cap") for less critical systems

Corrosion Monitoring

Corrosion Coupon Assembly

Corrosion coupon monitoring is an in-expensive method

Closed system should be equipped with system metallurgy coupon sites

imagination at work

Biological Monitoring

Dip slides

Aerobic Count Plates
(Petri Dish)

GE Proprietary and Confidential

Operational

Regular movement of water on systems that are idle

- Maintain Passive Film

Monitoring/Minimizing system losses - Maintain chemistry and minimize oxygen re-intrusion into system

System Layup - Special Actions taken during idle periods, typically over one month

Closed System Pre-Op Cleaning

Cleaning and Passivation of new piping surfaces
Proper water treatment is essential for
Removing oils/slag from manufacturing and construction
Protecting new pipe and creating a protective passive layer.

The precautions taken on Pre -Op cleaning Will add years to Heat Exchanger/Chiller life

Closed System Lay-up

Cleanliness of the heat transfer surfaces
Proper water treatment is essential for maintaining top efficiency minimizing corrosion.

The precautions taken on laying up
Will add years to Heat Exchanger/Chiller life
Prevent undesirable shutdowns

Questions?

Mark Ilaria
 GE Water \& Process Technologies 603-490-6357

