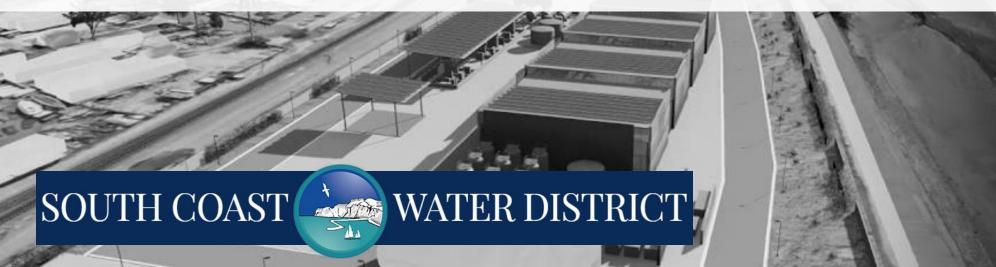
Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16



Making Resiliency Projects Sustainable

Exploring Power Supply Options for a Proposed California Oceanwater Desalination Plant

Marc Serna, P.E. (SCWD Chief Engineer) Mark Donovan, P.E. (GHD Desalination Program Manager) Nathan Ninemire, P.E. (Burns & McDonnell Project Manager)

Presentation Objectives

Introduce Desalination Project, Purpose, and Challenges

Identify Power's Role in Resiliency / Sustainability

Summarize Options Identified to Potentially Meet Needs

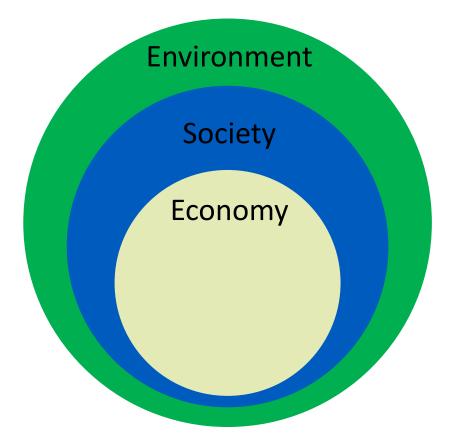
Present Key Findings and California-specific Considerations

COMMUNITY NEED

GHDWQODHEAD

Community Served & Identified Need

- SCWD serves 35k residents, 1k businesses, and 2 million visitors per year in south coastal Orange County, CA
- 85-100% of drinking water comes from outside community
- Concerns: Natural disasters, droughts, and supply shortages
- Solution: Local water source that provides reliable water supply, meets community water needs, and minimizes community and environmental impact

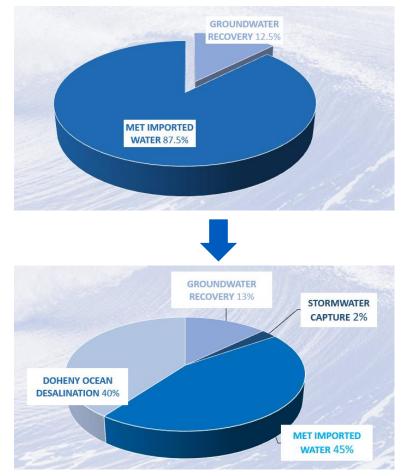

South Coast Service Boundar

Project Goals Established

SOUTH COAST

- Need-based Local Water Supply
- Cost-effective
- Community Service and Reliability

► 100% Carbon Neutral

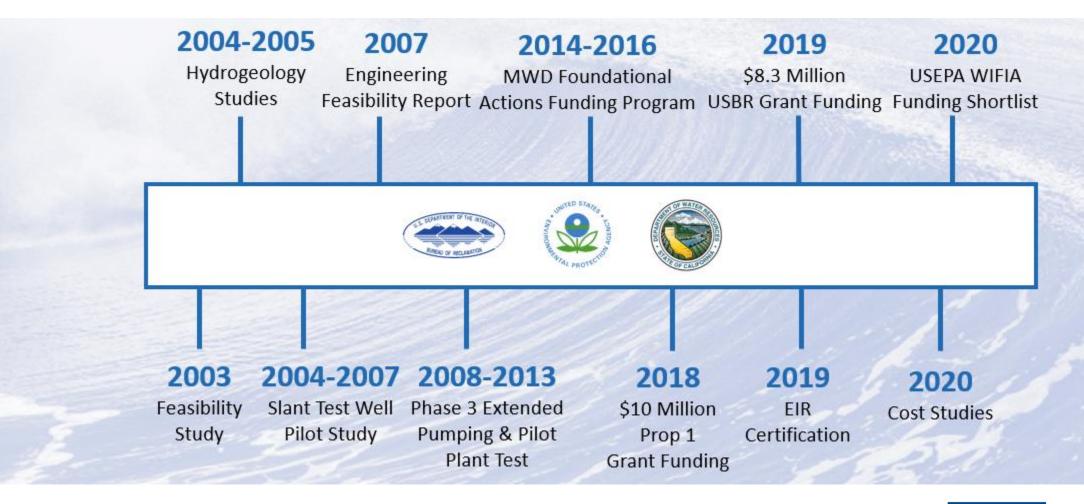

Moving the Project Forward

GHD Hired as Program Manager

Concept design using seawater reverse osmosis desalination technology

Regulatory Compliance with Ocean Plan

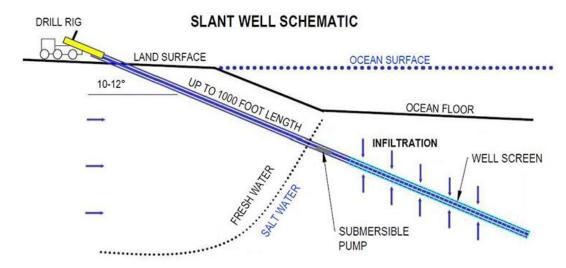
Community Engagement



PROJECT DEVELOPMENT

GHDWQODHEAD

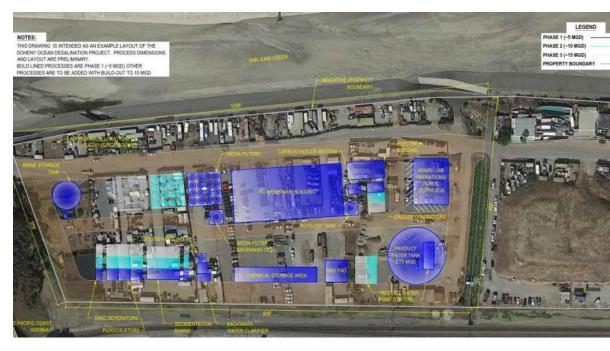
Project History



SOUTH COAST

Project Highlights

- Seawater reverse osmosis desalination technology
- Subsurface intake approach
- Comingled brine discharge
- Ideal location
- Community and environmental considerations



Project and Power Challenges

- Environmental concerns
- Community concerns
- Challenges to moving project forward
- Power and fuel

POWER NEEDS & OPTIONS

GHDWQODHEAD.

Power Source Options

1. Utility Power

- ► Lower capital, higher operating
- ► Perceived lower resilience
- ► Not carbon-neutral option

OR

2. Self-Generation

- Potential economic and resiliency benefit
- Potential for high-efficiency CHP
- Potential low carbon options

Utility Power – SDG&E; Reliability

	DEFINITION	SDG&E (Or	ange County)	PEER UTILITIES ¹		
OUTAGE INDICE		2018	3-Year Average	IEEE Large Utilities ²	IEEE Southwest Region	
SAIDI	Minutes Without Power / Customer	56.02	63.94	253	118	
SAIFI	Sustained Interruptions / Customer	0.585	0.587	1.37	1.1	
CAIDI	Minutes / Interruption	95.8	108.54	185	107.3	
MAIFI	Momentary Outage Customer %	0.168	0.229	NA	NA	

Notes:

- **1.** Based on IEEE benchmark data for 2017 operation, as 2018 not available.
- **2.** SDG&E classified as large utility with > 1M customers.

Utility Power – SDG&E; Carbon

► 45% Renewables Now

► SDGE Emissions Factor ~28% - 45% of Fossil Fuel Self Generation Options

California 2045 Carbon Neutrality = Built-In Carbon Reduction Plan

Utility Power – SDG&E; Costs

Service Extension Costs (credited back)

- ► Single feed
- Redundant feeds from common substation
- Redundant feeds from different substations

► Tariffs

- Energy charges
- Demand charges
- Steady load means steady demand charges

► First Year Expected Blended Rates*: >\$160/MWh with REC's

*2020 tariffs

Self-Generation Options; Summary

Fuel consuming generators (CT, RICE, Fuel Cell) and Solar PV

- Solar PV for carbon
- Alternate fuels considered
- CHP considered but no use for thermal energy
- Battery storage potential

Minimal utility import from utility

- Departing load and standby charges (beyond energy/demand charges)
- Departing load = cost for removing load from system
- Standby charges = cost for reserved capacity as backup

Offsite generation explored if economic benefit (less resiliency benefit)

Self-Generation Options; Resilient

Supply Option		Power Supply Configuration							
		1	2	3	4	5	6	7	
Single Electric Feed		Х	Х	Х	Х	Х	Х	Х	
Redundant Electric Feed			Х	Х					
Redundant Substation Tie-In				Х					
Dual Fuel CTG					Х				
Gas Recip						Х			
Fuel Cells							Х		
Solar								Х	
Single Failure Scenario ⁽¹⁾	Probability ⁽²⁾	Operational Outcome							
Loss of Main Unit	8								
Single Feeder Outage	5								
Substation Outage	4								
Loss of Natural Gas Service	4								
Multiple Failure Scenario ⁽¹⁾									
Total Electric Utility Outage	3								
Total Utility Outage (Gas / Electric)	2								
Total Utility & Main Unit Outage	1								
Outage Results No Operational Impact Not Applicable to Configuration (1) Failure Scenario outages can be avoided by installing backup generators and site fuel storage. (2) Subjective probability scale of 1-10, with 1 being the lowest and 10 being highest.									

Self-Generation Options; Carbon

Renewable Fuels Unavailable at Scale

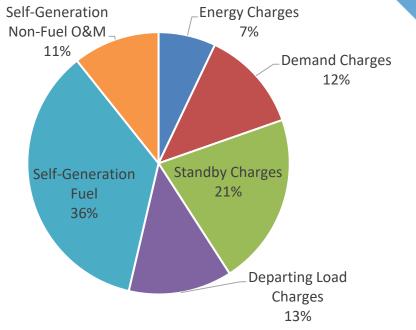
Fossil fuels require REC's long term (no built-in reduction like SDGE)

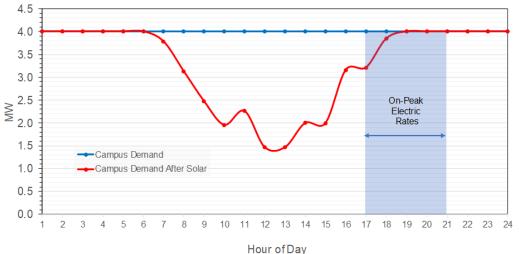
Fuel cells have similar carbon to reciprocating engine but lower overall emissions

Fuel cells have more hydrogen fuel capabilities (future-proofing)

Self-Generation Options; Carbon

Option		Self-Generation (Scope 1 Emissions)			ed Power Emissions)	Total Annual Carbon Footprint w/o RECs			
		MWh	MTCO2	MWh	MTCO2	MTCO2	Delta PP		
Base	Purchased Power (PP)	0	0	25,445	5,089	5,089	-		
1	PP + Solar PV	Reductions depend on magnitude of solar deployment							
2A	Combustion Turbine	24,173	17,872	1,272	254	18,126	256%		
2 B	Reciprocating Engine	24,173	11,029	1,272	254	11,284	122%		
2C	Fuel Cell	23,206	11,451	2,239	448	11,899	134%		


Purchased power decreases over time but not self-generation (except fuel conversion).



Self-Generation Options; Cost

- Traditional fossil fuel generators have lower production costs than purchased power, <u>except</u>:
 - Standby and departing load charges substantially impact economics (~50% increase)
 - CTG blended power cost > purchased power
 - RICE blended cost slightly less than purchased power
- Fuel cells financially attractive with soon-to-expire incentives (~30% less than PP)
- Solar PV attractive due to incentives, but supplements only
- Battery storage value not seen for site power, incentives or grid service could improve value

Considerations Moving Forward

"Greening" of grid has built-in future-proofing and carbon reductions

- Reliable utility power allows for resiliency
- Onsite generation only cost effective with state incentives Departing load charges apply and greatly impact economics
- Onsite generation less attractive with no CHP application
- ► No clear alternative fuels. Remote LFG option may be an option
- Resiliency may be best addressed with standby generators

