JDEA2021

Powering the Future: District Energy/CHP/Microgrids

Sept. 27-29 | Austin Convention Center | Austin, Texas

Hydrogen-Capable Gas Turbines for Carbon Neutral Power Generation

Wes Harris, Senior Key Expert, Aeroderivative Gas Turbine Systems

September 2021

Siemens Energy is a registered trademark licensed by Siemens AG.

.

Agenda

Why Hydrogen?

Oil: Hydrogen produces no CO₂ when combusted. **Partial Oxidation** Coal: **Gasification Process** Algae: **Photosynthesis** Process CO₂ Intensity of Natural Gas/Hydrogen Blends (g/kWh) Natural gas: Wood: 250 Steam Reforming **Pyrolysis Technology** 200 \square_2 150 Potential source: 100 Ethanol & methanol Renewable Energy: 50 Electricity: Electrolysis Electrolysis 0 0 10 20 30 40 50 60 70 80 90 100 H₂ Volume %

Wes Harris 4 Unrestricted © Siemens Energy 2021

September 2021

IDEA 2021

Siemens Energy is a registered trademark licensed by Siemens AG.

Hydrogen Economy Challenges

Hydrogen is projected to be economically feasible ~ 2030.

- Production Volumes
- Transportation of Hydrogen
- Cost
- Timescales
- Water
- Legislation

Source: EU Hydrogen Strategy

Siemens Energy is a registered trademark licensed by Siemens AG.

Agenda

State of the Art The mission is to burn 100% hydrogen

Gas turbine model		Power Output ¹ H ₂ capabilities in vol. %		CO ₂ reduction ₂₎ [%]		
50Hz	SGT5-9000HL	595 MW	50	23%	Values shown are indicative	
	🍥 SGT5-8000H	450 MW	30	11%	for new unit applications and	
	🍈 SGT5-4000F	329 MW	30	11%	and requirements. Capability to operate on 100% natural gas is maintained (full fuel flexibility). Some operating restrictions/special hardware and package modifications may apply.	
	🏶 SGT5-2000E	187 MW	30	11%		
60Hz	籣 SGT6-9000HL	440 MW	50	23%		
	籣 SGT6-8000H	310 MW	30	11%		
	籣 SGT6-5000F	215 to 260 MW	30	11%		
	🍈 SGT6-2000E	117 MW	30	11%		
50Hz or 60Hz	🌖 SGT-800	48 to 62 MW	75	47%	Higher H ₂ contents to be discussed on a project specific basis	
	🌖 SGT-750	40/34 to 41 MW	40	17%		
	🌖 SGT-700	33/34 MW	75	47%		
	🏐 SGT-A35	27 to 37/28 to 38 MW	15	100 5 / 100%		
	🌖 SGT-600	24/25 MW	75	47%		
	🌖 SGT-400	10 to 14/11 to 15 MW	10 65	3 / 36%		
	🌖 SGT-300	8/8 to 9 MW	30	11%	SG	
	🌖 SGT-100	5/6 MW	30 65	11 / 36%		
	🍥 SGT-A05	4 to 6 MW	30	11%		

DLE burner WLE burner

Diffusion burner with unabated NOx emissions

Heavy-duty gas turbines Industrial gas turbines Aeroderivative gas turbines

1 ISO, Base Load, Natural Gas; Version 5.2, June 2021 2) Compared with 100% natural gas operation

2

Benefits of Small Flex-Fuel Gas Turbines in the Hydrogen Economy

Metric Tons/Hour

In order to reach a 50% reduction in CO_2 ۲ emissions by mass, approximately **80 vol%** hydrogen fuel content is needed

The amount of hydrogen required to operate large ۲ gas turbines at this level of hydrogen fuel mixture is not economically viable today

Wes Harris

8

Benefits of Hydrogen Capable Gas Turbines

Net-zero Carbon emissions

- 30% vol H₂ is 1.5 tons total Hydrogen per day for a small 6 MW gas turbine
- 1.5 tons H₂ per day reduces CO₂ emissions 12%

Agenda

Hydrogen Combustion Challenges

SIEMENS COCIGY

Differences of hydrogen and natural gas as a fuel in gas turbines

Physics of hydrogen

H₂ Impact on Package

- High volumetric fuel flow for the same energy content
- 3x higher flow velocity than CH₄
- Jet momentum (mixing) affected
- 10x higher flame speed

Hydrogen Flame

Flame location closer to the burner increases risk of flashback

100% H₂ Combustion Kinetics

H₂ Impact on Combustion

- Increase of laminar flame speed with hydrogen %
- Increase of laminar flame speed with flame temperature
- Progressive increase of Flame speed with hydrogen

High engineering effort is expected to enable combustion systems for 100% Hydrogen.

Wes Harris **12** Unrestricted © Siemens Energy 2021

Siemens Energy is a registered trademark licensed by Siemens AG.

IDEA 2021

The Combustion Dynamics Challenge

- The shorter Flame can change the combustion noise signature
- Generally, higher energy density promotes combustion dynamics
- Higher flow speeds into the combustor to combat flashback also raise the probability of high frequency dynamics (screech)

Rig testing of combustor sectors, or full-scale combustors alone cannot reproduce the acoustic environment of the gas turbine

Wes Harris **13** Unrestricted © Siemens Energy 2021

IDEA 2021

Siemens Energy is a registered trademark licensed by Siemens AG.

Gas Turbine Combustion Technology Diffusion Flame Combustors (non-DLE)

Advantages and disadvantages of non-DLE systems:

- Robust systems (100% H₂ on some Siemens Energy Platforms)
- High flame temperatures yield high NOx
- Water injection rates typical for NOx abatement

Diffusion Flame Combustor

Gas Turbine Combustion Technology Dry Low Emissions Combustors (DLE)

DLE Systems Will Require Significant Engineering Effort

Hydrogen's higher reactivity poses specific challenges for the mixing technology in DLE systems:

- Flashback
- Lower Auto-Ignition
- Shift in Heat Release Distribution within the Combustor

DLE Combustor

IDEA 2021

Siemens Energy Solution for different H₂ levels

Differences in Design between "standard" and H₂-Gasturbines:

System/Procedures	H ₂ Volume Impact on Package					
	0%	10% – 30% ¹	50% – 70% ¹	100%		
		10% – 30% ¹	50% – 70% ¹			
Burners and combustion chamber	No change	Modified burner may be required	New burner des	ign		
Combustion monitoring system	n.a.	Changes required	Changes require	ed		
Fuel supply system	No change	Ensure all compone Stainless Steel	nts Pipe diameter in Purging system	ocrease		
Control/protection systems	No change	Additional gas detection				
		Electrical: Gas Grou	p IIC			
O&M Procedures	No change	Leak check of gas fu system after mainter inspections	uel Start-up/shutdov nance on conventional	wn fuel		
	No modifications needed	Smaller modifica may be required	Modifications needed	s		

1 Percentage varies from GT model to model and emission limit requirements

Current Decarbonization Effort SGT-A05 Case Study

Goal

• **100% Hydrogen** capability for both DLE and non-DLE systems

Approach

- Re-design fuel systems, burner components, and control logic upgrades
- Pre-mixer aerodynamic
 performance improvements
- Incorporate Additive Manufacturing

Deliverables

 Utilize **Hydrogen** by-products from petrochemical plants

SIEMENS

CUGLEY

- Emissions reduction from the current SGT-A05 DLE system
- Burn a wide range of hydrogen fuel blends

SGT-A05 DLE Case Study – Targeting Changes

Flame-Holding Margin

- Optimization of the aerodynamics entering, and within the pre-mixer are critical to success.
- Anticipated changes: faster average velocity through pre-mixer, smooth transitions of interfaces between parts, improved mixing aerodynamics
- Novel fuel injection techniques from the surfaces of the pre-mixer.

Emissions

- Shorter, more compact flames, burning closer to the pre-mixer exit will raise residence time for this dilution system influencing NOx.
- However, being a diluted combustor, the SGT-A05 can change primary zone temperature easily.
- Whether it can do so and remain operable over a wide range of hydrogen mixtures, must be proven through rig testing.

SIEMENS COCIGY

Fuel Flexibility

- It is unknown if the current simple fuel staging (pilot and premix) will be adequate to operate across a wide range of fuel properties.
- A change in fuel staging to use both stages in a premix mode may be necessary to achieve the full range of fuel flexibility.
- Novel fuel delivery technology is enabled using AM to minimize impact on system changes.

Hydrogen Combustion Key Enablers High Fidelity CFD

Provides critical insight to guide design decisions and test data

- Understand the velocity distribution in the premixer and into the primary zone to combat flashback
- Insight on temperature distribution to target changes in areas of high NOx production

Can produce optimized designs

 Coupling with additive manufacturing opens this design space

Hydrogen Combustion Key Enablers

Additive Manufacturing Benefits:

- Enables the integration of innovative design features
- Accelerates technology validation time by up to 75%
- Supports the development of combustion technology that can overcome the challenges of hydrogen applications

Hydrogen Combustion Key Enablers

Extensive High Pressure Rig Testing

60% vol H₂

100% vol H₂

Conclusion

Rapid Design, Manufacture, and Testing Cycles Key to Success

Design and Analysis
 High fidelity CFD tools like Large Eddy
 Simulations and design optimization

2. Rapid Prototyping

- Additive manufacturing reduces lead time and enables better designs
- Proven extremely successful for the SGT-A05 development program with entire AM combustion can assemblies reducing cost and lead time

3. High Pressure Testing

High-pressure burner tests combined with full engine tests

Zero Emission H₂ Test center

Engine Tests

Wes Harris 25 Unrestricted © Siemens Energy 2021

Wesley Harris

Senior Key Expert, Aeroderivative Gas Turbines

Email: wesley.harris@siemens-energy.com Phone: 317.525.8006