

SIEMENS energy

Hydrogen-Capable Gas Turbines for Carbon Neutral Power Generation

Wes Harris,
Senior Key Expert, Aeroderivative Gas Turbine Systems

Agenda

Why Hydrogen?

SIEMENS enersy

Hydrogen produces no CO_{2} when combusted.
CO_{2} Intensity of Natural Gas/Hydrogen Blends (g/kWh)

Hydrogen Economy Challenges

Hydrogen is projected to be economically feasible $\boldsymbol{\sim} 2030$.

- Production Volumes
- Transportation of Hydrogen
- Cost
- Timescales
- Water
- Legislation

Agenda

State of the Art
The mission is to burn 100\% hydrogen

CO_{2} reduction ${ }_{2)}$ [\%]	
23\%	Values shown are indicative
11\%	for new unit applications and
11\%	and requirements. Capability
11\%	to operate on 100\% natural
23\%	gas is maintained (full fuel
11\%	restrictions/special hardware
11\%	and package modifications
11\%	may apply.
47\%	
17\%	Higher H_{2} contents to be discussed on a project specific
47\%	
5 / 100\%	
47\%	
3/36\%	
11\%	
11/36\%	
11\%	

. Heavy-duty gas turbines

- Industrial gas turbines

Aeroderivative gas turbines
1 ISO, Base Load, Natural Gas; Version 5.2, June 2021 2) Compared with 100\% natural gas operation

Benefits of Small Flex-Fuel Gas Turbines in the Hydrogen Economy

- In order to reach a 50% reduction in CO_{2} emissions by mass, approximately 80 vol\% hydrogen fuel content is needed
- The amount of hydrogen required to operate large gas turbines at this level of hydrogen fuel mixture is not economically viable today

Benefits of
 Hydrogen Capable Gas Turbines

Net-zero Carbon emissions

- 30% vol H_{2} is 1.5 tons total Hydrogen per day for a small 6 MW gas turbine
- 1.5 tons H_{2} per day reduces CO_{2} emissions 12\%

SGT-A05 KB7HE Hydrogen Emissions Reduction

Agenda

Hydrogen Combustion Challenges

Differences of hydrogen and natural gas as a fuel in gas turbines

Physics of hydrogen

$$
\mathrm{H}_{2} \text { Impact on Package }
$$

- High volumetric fuel flow for the same energy content
- $3 x$ higher flow velocity than CH_{4}
- Jet momentum (mixing) affected
- 10x higher flame speed

Hydrogen Flame

Flame location closer to the burner increases risk of flashback

100\% H_{2} Combustion Kinetics

H_{2} Impact on Combustion

- Increase of laminar flame speed with hydrogen \%
- Increase of laminar flame speed with flame temperature
- Progressive increase of Flame speed with hydrogen

High engineering effort is expected to enable combustion systems for 100\% Hydrogen.

The Combustion Dynamics Challenge

- The shorter Flame can change the combustion noise signature
- Generally, higher energy density promotes combustion dynamics
- Higher flow speeds into the combustor to combat flashback also raise the probability of high frequency dynamics (screech)

Rig testing of combustor sectors, or full-scale combustors alone cannot reproduce the acoustic environment of the gas turbine

Gas Turbine Combustion Technology Diffusion Flame Combustors (non-DLE)

Advantages and disadvantages of non-DLE systems:

- Robust systems ($100 \% \mathrm{H}_{2}$ on some Siemens Energy Platforms)
- High flame temperatures yield high NOx
- Water injection rates typical for NOx abatement

Gas Turbine Combustion Technology
 Dry Low Emissions Combustors (DLE)

DLE Systems Will Require Significant Engineering Effort

Hydrogen's higher reactivity poses specific challenges for the mixing technology in DLE systems:

- Flashback
- Lower Auto-Ignition
- Shift in Heat Release Distribution within the Combustor

Agenda

Siemens Energy Solution for different H_{2} levels

Differences in Design between "standard" and H_{2}-Gasturbines:

System/Procedures	H_{2} Volume Impact on Package			
	0\%	10\%-30\% ${ }^{1}$	50\% - 70\% ${ }^{1}$	
		10\%-30\% ${ }^{1}$ - $50 \%-70 \%^{1}$		
Burners and combustion chamber	No change	Modified burner may be required	New bu	
Combustion monitoring system	n.a.	Changes required	Change	
Fuel supply system	No change	Ensure all components Stainless Steel	Pipe di Purging	
Control/protection systems	No change	Additional gas detection Electrical: Gas Group IIC		
O\&M Procedures	No change	Leak check of gas fuel system after maintenance inspections	Start-u on conv	
	No modific needed	Smaller modifications may be required	Mod nee	

[^0]
Current Decarbonization Effort SGT-A05 Case Study

Goal

- 100% Hydrogen capability for both DLE and non-DLE systems

Approach

- Re-design fuel systems, burner components, and control logic upgrades
- Pre-mixer aerodynamic performance improvements
- Incorporate Additive Manufacturing

Deliverables

- Utilize Hydrogen by-products from petrochemical plants
- Emissions reduction from the current SGT-A05 DLE system
- Burn a wide range of hydrogen fuel blends

Flame-Holding Margin

- Optimization of the aerodynamics entering, and within the pre-mixer are critical to success.
- Anticipated changes: faster average velocity through pre-mixer, smooth transitions of interfaces between parts, improved mixing aerodynamics
- Novel fuel injection techniques from the surfaces of the pre-mixer.

Emissions

- Shorter, more compact flames, burning closer to the pre-mixer exit will raise residence time for this dilution system influencing NOx.
- However, being a diluted combustor, the SGT-A05 can change primary zone temperature easily.
- Whether it can do so and remain operable over a wide range of hydrogen mixtures, must be proven through rig testing.

Fuel Flexibility

- It is unknown if the current simple fuel staging (pilot and premix) will be adequate to operate across a wide range of fuel properties.
- A change in fuel staging to use both stages in a premix mode may be necessary to achieve the full range of fuel flexibility.
- Novel fuel delivery technology is enabled using AM to minimize impact on system changes.

Agenda

Hydrogen Combustion Key Enablers High Fidelity CFD

Provides critical insight to guide design decisions and test data

- Understand the velocity distribution in the premixer and into the primary zone to combat flashback
- Insight on temperature distribution to target changes in areas of high NOx production

Can produce optimized designs

- Coupling with additive manufacturing opens this design space

Additive Manufacturing Benefits:

- Enables the integration of innovative design features
- Accelerates technology validation time by up to 75\%
- Supports the development of combustion technology that can overcome the challenges of hydrogen applications

Hydrogen Combustion Key Enablers

Extensive High Pressure Rig Testing

Encior

Conclusion

Rapid Design, Manufacture, and Testing Cycles Key to Success

1. Design and Analysis High fidelity CFD tools like Large Eddy Simulations and design optimization

2. Rapid Prototyping

- Additive manufacturing reduces lead time and enables better designs
- Proven extremely successful for the SGTA05 development program with entire AM combustion can assemblies reducing cost and lead time

3. High Pressure Testing High-pressure burner tests combined with full engine tests

Zero Emission H_{2} Test center
Rig Tests
Engine Tests

Wesley Harris

Senior Key Expert, Aeroderivative Gas Turbines

Email: wesley.harris@siemens-energy.com
Phone: 317.525.8006

[^0]: 1 Percentage varies from GT model to model and emission limit requirements

