Resilience Gaps & Clean Energy Solutions at State-Owned Medical & Residential Care Facilities

IDEA Pittsburgh – June 26th 2019

Geoff Gunn and Alan Glynn

Agenda

Resilience and Sustainability in MA Study overview Results Example Summary

Why do we need to be resilient?

The New York Times

Nursing Home Deaths in Florida Heighten Scrutiny of Disaster Planning

Some hospitals hang on as others close amid Harvey's floods

By Jen Christensen, CNN) Updated 12:29 AM ET, Thu August 31, 2017

Following deaths from Irma, Florida looks to new rules for keeping nursing homes cool after outages

0 0

0

https://www.nytimes.com/interactive/2017/09/01/upshot/cost-of-hurricane-harvey-only-one-storm-comes-close.html

http://www.asce.org/failuretoact/

Cost to US GDP

trillion by 2025

Lost Business Sales

trillion by 20205

Lost Jobs

2.5

million jobs in 2025

Cost to Families

per year

3,400

Massachusetts Context

Resilience

\$2.4 Billion in Proposed Governor and Legislative Resilience Initiatives

Sustainability

Massachusetts GHG Emissions, Business-As-Usual (BAU) Projection, and 2020 Emission Limit

 \equiv

Robust clean energy and sustainability policies

Overview: Resiliency Study Goals

Purpose of Study	"Identify opportunities to utilize clean energy technologies to increase the energy resiliency of each facility, thereby reducing the likelihood of prolonged outages during extreme weather events"
	• Increase length of time the site is able to maintain facility-wide or critical load operations during grid outage
Resilience Goals	• Increase number of ancillary services or facility square footage with backup generation in the event of grid outage
	• Increase the redundancy of the existing backup generation
	• Replace or supplement fossil fuel back up power to increase facility operational capabilities during power outage
Clean Energy Objectives	• Provide diversity of fuel sources to increase reliability by removing reliance on a single fuel and on fuel transport
	• Reduce GHG emissions, reliance on fossil fuels

Project Overview: Background on Site Selection

Primary Purpose	Size (SF)
Community Mental Health Center	61,000
Community Mental Health Center	12,000
Community Mental Health Center	67,000
Community Mental Health Center	86,000
Hospital	301,061
Hospital	1,036,982
Hospital	179,112
Intermediate Care Facility	314,385
Long-term Care Facility	233,000
Long-term Care Facility	609,427
Youth Services Center	70,000
Youth Services Center	23,390

What is resilience?

Resilience is the capacity to maintain services, increase flexibility, and continue to thrive despite shocks and stressors.

Key is to focus on the **CRITICAL FUNCTIONALITY** of systems, not simply restoring the system itself

Why do we need to be resilient?

Enhanced resilience:

- Increases public and patient safety
- Avoids evacuations
- Protects vulnerable populations
- Reduces burden on emergency management personnel
- Reduces costs associated with crisis management

Study overview

3 Step Process

Step 1: Resilience Gap Assessment Step 2: Preliminary Technology Screen Step 3: Feasibility Studies / System Modeling

Step 1 Energy resilience gap assessment

Site investigation

Guided interview and site walk

- Are any sites particularly vulnerable to projected climate change impacts?
- Are any sites more susceptible to outages or operational failures?
- Are certain facility operations more vulnerable to outages than others?
- Are any of those operations critical?
- What types of resilience is needed for each site?
- How much would adding clean energy resiliency cost?

Manmade Hazards

Winter Storms

Site score card

Sufficient for current needs with significant redundancy Sufficient for current needs with some redundancy Sufficient for current needs, but lacks redundancy Insufficient for current needs

	Assessment Categories						
Syste	ms Resilience						
Electric	al						
	Utility Service	2					
Normal Power	System Resilience	1	1.				
Pol	System Capacity	2	1.3				
_	Equipment Age/ Condition	1					
a .	System Resilience	1					
Backup Power	On-site Generation Capacity	2	1.5				
Po	On-site Fuel Storage Capacity	2					
	Equipment Age/ Condition	1					
HVAC			_				
	System Resilience	2	1				
ng	System Capacity	2	1				
Heating	On-site Fuel Storage Capacity	2	2				
Ŧ	System Backup Power/ Supply	2					
	Equipment Age/ Condition	2					
	System Resilience	2					
Cooling	System Capacity	2	١.				
8	System Backup Power/ Supply	0	0				
0	Equipment Age/ Condition						
Miscell	aneous Systems						
	l Records	2					
	// Access Control System	2	1				
	rs/ Patient Transport	3					
	tic Water	2	2.0				
	// Wastewater	1					
Telecor		2					
relector		-					
	Systems Resilier	nce Average	1.4				
	Systems Resilier	ice Average	-				
Oner	ational Resilience						
	ncy Mgmt. Plan		0				
	cessibility		2				
			1				
Staff Accommodations							
Operational Redundancy/ Access to Nearby Facilities							
Foodservice							
	Pharmacy/ Drug Storage						
Floodin			2				
	ity to Extreme Heat or Cold		1				
Sensitivity to Extreme Wind							
	Risk		2				
Seismic	1101		-				

Electrical

• Normal and emergency power system

HVAC

• Heating and cooling systems

Miscellaneous Systems

- Medical records
- Security/Access control
- Elevators/Patient Transport
- Domestic Water
- Sanitary/Wastewater
- Telecom/IT

Energy resilience

Syste	ms Resilience	
Electri		
	Utility Service	2
Normal Power	System Resilience	1
N Q	System Capacity	2
	Equipment Age/ Condition	1
۹. ۲	System Resilience	1
Backup Power	On-site Generation Capacity	2
Po	On-site Fuel Storage Capacity	2
	Equipment Age/ Condition	1
HVAC		
	System Resilience	2
Heating	System Capacity	2
eati	On-site Fuel Storage Capacity	2
Ť	System Backup Power/ Supply	2
	Equipment Age/ Condition	2
	System Resilience	2
Cooling	System Capacity	2
8	System Backup Power/ Supply	C
Ŭ	Equipment Age/ Condition	3
Miscel	laneous Systems	
Medica	al Records	2
Securit	y/ Access Control System	2
Elevato	ors/ Patient Transport	3
Domes	tic Water	2
Sanitar	y/ Wastewater	1
Teleco	m	2

Operational resilience

Operational Resilience						
Emergency Mgmt. Plan	0					
Staff Accessibility	2					
Staff Accommodations	1					
Operational Redundancy/ Access to Nearby Facilities	2					
Foodservice	0					
Pharmacy/ Drug Storage	2					
Flooding Risk	2					
Sensitivity to Extreme Heat or Cold	1					
Sensitivity to Extreme Wind	2					
Seismic Risk	2					

Operational Resilience Average

Emergency Mgmt. Plan

Staff Accessibility

Staff Accommodations

Operational Redundancy/ Access to Nearby Facilities

Foodservice

Pharmacy/ Drug Storage

Flooding Risk

Sensitivity to Extreme Heat or Cold

Sensitivity to Extreme Wind

Seismic Risk

Portfolio score card

		Systems	Resilience S	Summary			
Systems	Elect	trical	нν	HVAC			
Resilience Average	Normal Power	Backup Power Heating		Cooling	Misc. Systems		
1.4	1.5	1.3	2.2	0	2.0		
1.3	1.8	1	2	0	1.8		
0.7	1.8	0	0	0	1.5		
1.4	2	1.5	2	0	2.0		
1.4	1.5	1.5	2.2	0	2.0		
1.6	2	1.8	2	0	2.2		
2.0	2	1.8	2.2	1.8	2.0		
2.2	1.5	2.8	2.4	2.3	2.2		
2.2	1.8	2.5	2.4	2	2.3		
2.0	1.5	2.3	2	1.8	2.2		
1.8	1.5	2	1.6	2	1.8		
1.8	2.3	2.3	2.2	0	2.0		
1.6	1.7	1.7	1.9	0.8	2.0		

	Operational Resilience												
Operational Resilience Average	Emergency Mgmt. Plan	Staff Accessibility	Staff Accommodations	Operational Redundancy/ Access to Nearby Facilities	Foodservice	Pharmacy/ Drug Storage	Flooding Risk	Sensitivity to Extreme Heat or Cold	Sensitivity to Extreme Wind	Seismic Risk			
1.8	2	2	1	2	3	2	2	1	2	1			
2.1	3	1	2	3	3	2	2	1	2	2			
1.7	2	2	3	2	0	2	2	1	1	2			
1.4	0	2	1	2	0	2	2	1	2	2			
1.8	2	2	1	2	2	2	2	1	2	2			
1.6	2	2	1	2	2	2	2	1	1	1			
1.7	2	2	1	2	1	2	2	1	2	2			
2.1	2	3	2	3	3	2	2	2	1	1			
2.1	2	3	2	2	3	3	2	2	1	1			
1.8	2	2	1	2	2	2	2	1	2	2			
2.1	2	3	2	2	3	2	2	2	1	2			
1.8	2	2	1	2	2	2	2	1	2	2			
1.8	1.9	2.2	1.5	2.2	2.0	2.1	2.0	1.3	1.6	1.7			

Key portfolio Resilience Gaps

Identified several "Quick hits" which No could immediately improve energy power resilience service cooling preparedness planning 1 Site 2 sites 7 sites 4 sites

Step 2 Clean energy technology screening

Solar photovoltaics

Battery energy storage

Solar thermal

Combined heat and power

High efficiency fuel cells Thermal energy storage Wind power

Microgrids

High efficiency fuel cells Thermal energy storage Wind power

Microgrids

Step 3 Clean energy system modeling and feasibility study

Results

	Utility	СНР	CHP + TES	CHP + PV	CHP + PV + BES	PV	PV + BESS	Fuel Cell	Fuel Cell + TES	Wind	uG
Site 1	IOU	\checkmark	\checkmark					\checkmark	\checkmark		
Site 2	MLP	\checkmark					\checkmark				
Site 3	IOU	\checkmark		\checkmark	\checkmark		\checkmark				
Site 4	IOU	\checkmark		\checkmark	\checkmark		\checkmark				\checkmark
Site 5a	MLP						\checkmark				
Site 5b	IOU						\checkmark				
Site 6	MLP	\checkmark					\checkmark				
Site 7	MLP					\checkmark	\checkmark				
Site 8	IOU	\checkmark		\checkmark	\checkmark		\sim				
Site 9	MLP	\checkmark				\checkmark	\checkmark			\checkmark	
Site 10	MLP	\checkmark		\checkmark			\sim				\checkmark
Site 11	IOU										\checkmark

	Utility	СНР	CHP + TES	CHP + PV	CHP + PV + BES	PV	PV + BESS	Fuel Cell	Fuel Cell + TES	Wind	uG
Site 1	IOU	\checkmark									
Site 2	MLP										
Site 3	IOU	\checkmark		\checkmark	\checkmark		\checkmark				
Site 4	IOU	\checkmark		\checkmark	\checkmark		\checkmark				\checkmark
Site 5a	MLP										
Site 5b	IOU										
Site 6	MLP	\checkmark									
Site 7	MLP										
Site 8	IOU	\checkmark		\checkmark	\checkmark		\checkmark				
Site 9	MLP										
Site 10	MLP	\checkmark		\checkmark							\checkmark
Site 11	IOU										\checkmark

NPV, GHG reductions, and Resilience Benefit

NPV, GHG reductions, and Resilience Benefit

• IOU • MLP

Cost Effectiveness of Clean Energy Technologies vs. Diesel Generation by Site

Cost Effectiveness of Clean Energy Technologies vs. Diesel Generation by Site

Cost Effectiveness of Clean Energy Technologies vs. Diesel Generation by Site

Energy Trilemma

Need to balance:

- Resilience
- Sustainability and
- Costs

Traditional metrics to evaluate solution effectiveness are insufficient

Solar + Storage example

Solar + storage basics

Maximize ROI (Business-as-usual):

Size solar to maximize ROI by minimizing export of PV energy

Size storage to reduce any remaining peak demand

Frequent charge/discharge cycles required to maximize revenue from energy storage

Maximize resilience:

Size solar to produce energy required for 24hour operation of resilience loads Size storage to power resilience loads once PV system is no longer generating energy

Solar + storage system sizing Maximize ROI

Facility load

Solar + storage system sizing Maximize ROI

Facility electric load

Solar + storage system sizing Maximize ROI

Load

Solar + storage system sizing Maximize ROI – Batteries allow larger PV system sizes

Facility electric load

Load

Facility electric load

Hourly resilience load profile

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Maximize ROI

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Summary

Process

Step 1: **Resilience** Gap Assessment

Technology Screen

StudiesModifyeexpectations for MoROI and NPV for clean energy systems in order to value resilience benefits.

> Align resilience expectations with realistic system capabilities.

Be flexible

Some resilience is better than none.

Resilience can address a range of challenges leading to multiple strategies.

Questions

