

DESIGNING MICROGRIDS

Michael Dempsey

June 20, 2016

Agenda

- Define Microgrid
- Discuss Typical Attributes
- Common Platforms
- Typical Customers and Applications
- Design Considerations
- Case Study

Microgrid Definition

A microgrid is

"a group of interconnected loads" and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." - the U.S. Department of Energy

Microgrid Definition

A microgrid is

"a group of interconnected loads" and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." - the U.S. Department of Energy

Common Features

- Decoupling of Generators from Loads
- Seamless Transitions to/from Utility
- Increased Redundancy of Generation

Historical View of Microgrids

- Strictly for Customer Energy Reliability / Independence
- Heavily Dependent on Diesel Generation
- Bi-State Systems

Microgrid Evolution

- Microgrids Now Contain Assets which are Installed Primarily for Utility-Tied Operation
- No Energy Source is Out of Bounds
- Multiple Modes of Operation -Both Grid Tied and Islanded

Where We are Headed

- Microgrids Designed to be an IPP 99.99% of the Time with Customer Energy Security as a Secondary Requirement
- Utilities Adopting New Rate Structures and Capital Plans to Profit from Microgrid Capabilities
- Cyber Security is one Big Hurdle to Clear

Microgrid Platforms

- Central Energy Plant Approach
- Focused on Highly Efficient **Utility** Tied Operation

University

Campuses

Common on

Traditional Critical Infrastructure

- Central Backup Power Plant Approach
- Only Operate in Absence of Utility
- Common at **Data Centers** and Hospitals

Critical Infrastructure

Gen

Next

- Distributed Generation Approach
- Focused on Flexibility and **Sustainability**
- Emerging Technology

Power **Combined Heat &**

- Energy is a Significant Portion of Total Operating Costs
- Loss of Research can be Very Costly
- Students Expect Uninterrupted Utilities

- Codes Only Require "Triage Quality" of Care
- During Disasters, People Migrate to Hospitals, Police Stations, Etc. as Places of Refuge
- High Efficiency Buildings and Technology-Based Care do not Permit "Limp Mode" Operation

- Automation has Increased Susceptibility of Overall Manufacturing Process to Electrical Issues
- Just in Time Inventory Practices Reduce or Eliminate Cushion of Already Manufactured Products
- Rolling Blackouts can Result in Dramatic Costs of Lost Production and Lost Material

- Greater Dependence on Electronics at all Levels of Military
- Leaner Military has Resulted in a Great Deal of Theater Command and Control being Located in US
- Very Large Renewable Generation Installations which Are Unavailable During Outages

Design Considerations

- Existing or New Facility/System
- Loads
- Sources
- Distribution System
- Control
- Cost

Design Considerations Existing/New

- Existing Facility or Asset(s)
 - Required Modifications
 - Loads
 - Sources
 - Load/Source Balance
 - Partial of Full Operation
 - Budget
- New Facility or Asset(s)
 - Projected Load/Source Balance
 - Partial of Full Operation
 - Budget

Design Considerations Loads

- Load Magnitude
 - Peak Load
 - Average Load
 - Critical Load
 - Load Factor
- Load Segregation
 - Load Step Size
 - Starting Methods
- Thermal/Electrical Load Balance
 - CHP Applications

Design Considerations

- Normal Deployment Mode
 - Grid Tied
 - Island Capable
 - Import/Export
- Source Capacity
- Fuel Source Reliability
- Renewables
- Load Control/Load Share
 - Multiple Sources Operating in Parallel
 - Transient Responsiveness

Design Considerations Distribution System

- System Configuration
 - Source Location
 - Load Location
 - Access to Load
- System Protection
 - Utility interconnection Protection
 - Islanded Protection

Design Considerations Controls

- Distribution Automation
- Source Control
 - Isochronous
 - Parallel Only
 - Islanding
- Load Control
 - Load Switching
 - Load Shed
 - Load Sequencing/Starting

Design Considerations Cost

- Existing Assets
- New Assets
- Magnitude of Operation Supported
- Distribution System Modifications
- Automation Level

Establish Basis of Design

- Establish Functional Criteria
 - What the System Can Do
 - What the System Can't Do
- Document Key Design Decisions
- Obtain Stakeholder Buy-in
- Carefully Plan Level of Automation
- Mind the Budget

Case Study

UT Southwestern Medical Ctr

Project Background

- Transmission Interconnect
- Customer owned substation
- 21.8MW Distributed Peak Shaving Generation
 - Only designed to operate grid connected
- Campus Load Exceeds Generation Capacity
 - Campus peak load 60MVA+

BURNS MEDONNELL.

Design Considerations

- Existing or New Facility/System EXISTING
- Loads 60MVA+
- Sources <22MW</p>
- Distribution System 13.8kV MANUAL
- Control NO OVERALL AUTOMATION SYSTEM
- Cost MINIMIZE \$\$

Loads

- Load Significantly Greater Than Source
- Develop Process to Prioritize Critical Load
 - Campus Management
 - Stakeholder Involvement
 - Build Consensus
 - Rotate Power Periodically
 - Significant Operator Involvement
- Define Load Step Size

Sources

- Existing onsite generation
 - North Campus 3 CAT NG Recip 3MW Each
 - South Campus 4 Deutz NG Recip 3.2MW Each
- Multiple Building-specific
 Emergency Diesel Generators
- University Hospital Separate
 Diesel Generator System
- Added Small DG for Starting Air

Distribution System

- 13.8kV Campus Owned
- Access to All Load
- Utility Interconnection Protection Modifications Required
- Relay Setting Changes
- Manual System Operation

Controls

- North Campus
 - Modify CAT Switchgear System Facilitate Export to Campus
 - Enable Test Mode Isochronous Load Share Mode
- South Campus
 - No Changes Required
- New Microgrid Operational Mode

Current Operational Mode

- Normal Mode
 - Grid connected
 - Generation only operates for:
 - Peak shaving (4CP avoidance)
 - Emergency load service (demand response)

NORMAL OPERATION

Added Operational Mode

- Microgrid Mode Added Functionality
 - Island operation
 - CAT generators isochronous load share act as source
 - Deutz generators base load mode operator adjusts setpoint
 - Diesel generator maintains compressor for air start of CAT generators
 - CAT and Deutz generators controls do not communicate
 - Manual load add/shed by operators

MICROGRID OPERATION

Microgrid Mode

- Load swings absorbed by CAT generators only
- Manually transfer load to Deutz generators
 - Operator manipulate baseload setpoint
- Minimal modifications required to implement
 - Small starting air compressor DG
 - Substation relay settings modification
- Control systems unchanged
- Detailed operations procedure required

Summary

- ► No Two Microgrid Systems are Identical
- Multiple Platforms with Differing Requirements
- Similar Set of Design Considerations
- Competing Agendas Between Stakeholders
- More Automation More Complexity Higher Cost
- Establish and Document Design Basis

BURNSMCD.COM/ONSITE

CONTACT

Michael Dempsey, P.E.

Electrical Department Manager

P 817-733-8186

E mdempsey@burnsmcd.com