DESIGNING MICROGRIDS

Michael Dempsey

June 20, 2016
Agenda

► Define Microgrid
► Discuss Typical Attributes
► Common Platforms
► Typical Customers and Applications
► Design Considerations
► Case Study
Microgrid Definition

A microgrid is

“a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.”

- the U.S. Department of Energy
Microgrid Definition

A microgrid is

“a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.”

- the U.S. Department of Energy
Common Features

- Decoupling of Generators from Loads
- Seamless Transitions to/from Utility
- Increased Redundancy of Generation
Historical View of Microgrids

- Strictly for Customer Energy Reliability / Independence
- Heavily Dependent on Diesel Generation
- Bi-State Systems
Microgrid Evolution

- Microgrids Now Contain Assets which are Installed Primarily for Utility-Tied Operation
- No Energy Source is Out of Bounds
- Multiple Modes of Operation - Both Grid Tied and Islanded
Where We are Headed

- Microgrids Designed to be an IPP 99.99% of the Time with Customer Energy Security as a Secondary Requirement
- Utilities Adopting New Rate Structures and Capital Plans to Profit from Microgrid Capabilities
- Cyber Security is one Big Hurdle to Clear
Microgrid Platforms

- **Combined Heat & Power**
 - Central Energy Plant Approach
 - Focused on Highly Efficient Utility Tied Operation
 - Common on University Campuses

- **Traditional Critical Infrastructure**
 - Central Backup Power Plant Approach
 - Only Operate in Absence of Utility
 - Common at Data Centers and Hospitals

- **Next Gen Critical Infrastructure**
 - Distributed Generation Approach
 - Focused on Flexibility and Sustainability
 - Emerging Technology
Universities

- Energy is a Significant Portion of Total Operating Costs
- Loss of Research can be Very Costly
- Students Expect Uninterrupted Utilities
Hospitals

- Codes Only Require “Triage Quality” of Care
- During Disasters, People Migrate to Hospitals, Police Stations, Etc. as Places of Refuge
- High Efficiency Buildings and Technology-Based Care do not Permit “Limp Mode” Operation
► Automation has Increased Susceptibility of Overall Manufacturing Process to Electrical Issues
► Just in Time Inventory Practices Reduce or Eliminate Cushion of Already Manufactured Products
► Rolling Blackouts can Result in Dramatic Costs of Lost Production and Lost Material
Greater Dependence on Electronics at all Levels of Military
Leaner Military has Resulted in a Great Deal of Theater Command and Control being Located in US
Very Large Renewable Generation Installations which Are Unavailable During Outages
Design Considerations

- Existing or New Facility/System
- Loads
- Sources
- Distribution System
- Control
- Cost
Design Considerations Existing/New

- Existing Facility or Asset(s)
 - Required Modifications
 - Loads
 - Sources
 - Load/Source Balance
 - Partial of Full Operation
 - Budget

- New Facility or Asset(s)
 - Projected Load/Source Balance
 - Partial of Full Operation
 - Budget
Design Considerations Loads

- Load Magnitude
 - Peak Load
 - Average Load
 - Critical Load
 - Load Factor

- Load Segregation
 - Load Step Size
 - Starting Methods

- Thermal/Electrical Load Balance
 - CHP Applications
Design Considerations

- Normal Deployment Mode
 - Grid Tied
 - Island Capable
 - Import/Export
- Source Capacity
- Fuel Source Reliability
- Renewables
- Load Control/Load Share
 - Multiple Sources Operating in Parallel
 - Transient Responsiveness
Design Considerations Distribution System

- System Configuration
 - Source Location
 - Load Location
 - Access to Load

- System Protection
 - Utility interconnection Protection
 - Islanded Protection
Design Considerations Controls

- Distribution Automation
- Source Control
 - Isochronous
 - Parallel Only
 - Islanding
- Load Control
 - Load Switching
 - Load Shed
 - Load Sequencing/Starting
Design Considerations Cost

- Existing Assets
- New Assets
- Magnitude of Operation Supported
- Distribution System Modifications
- Automation Level
Establish Basis of Design

- Establish Functional Criteria
 - What the System Can Do
 - What the System Can’t Do
- Document Key Design Decisions
- Obtain Stakeholder Buy-in
- Carefully Plan Level of Automation
- Mind the Budget
Project Background

- Transmission Interconnect
- Customer owned substation
- 21.8MW Distributed Peak Shaving Generation
 - Only designed to operate grid connected
- Campus Load Exceeds Generation Capacity
 - Campus peak load 60MVA+
Design Considerations

- Existing or New Facility/System - EXISTING
- Loads – 60MVA+
- Sources - <22MW
- Distribution System – 13.8kV MANUAL
- Control – NO OVERALL AUTOMATION SYSTEM
- Cost – MINIMIZE $$
Loads

- Load Significantly Greater Than Source
- Develop Process to Prioritize Critical Load
 - Campus Management
 - Stakeholder Involvement
 - Build Consensus
 - Rotate Power Periodically
 - Significant Operator Involvement
- Define Load Step Size
Sources

- Existing onsite generation
 - North Campus - 3 CAT NG Recip – 3MW Each
 - South Campus - 4 Deutz NG Recip – 3.2MW Each

- Multiple Building-specific Emergency Diesel Generators

- University Hospital – Separate Diesel Generator System

- Added Small DG for Starting Air
Distribution System

- 13.8kV Campus Owned
- Access to All Load
- Utility Interconnection Protection Modifications Required
- Relay Setting Changes
- Manual System Operation
Controls

► North Campus
 • Modify CAT Switchgear System – Facilitate Export to Campus
 • Enable Test Mode – Isochronous Load Share Mode

► South Campus
 • No Changes Required

► New Microgrid Operational Mode
Current Operational Mode

- Normal Mode
 - Grid connected
 - Generation only operates for:
 - Peak shaving (4CP avoidance)
 - Emergency load service (demand response)
NORMAL OPERATION

UTILITY TRANSMISSION

SOUTH CAMPUS

TRIP

4 X 3.2MW

2000'

CAMPUS FEEDERS

138 – 13.8kV Delta-Wye

NORTH CAMPUS

TRIP

3 X 3MW

5000'

UTILITY TRANSMISSION

138 – 13.8kV Delta-Wye
Added Operational Mode

► Microgrid Mode – Added Functionality

• Island operation
• CAT generators isochronous load share – act as source
• Deutz generators base load mode – operator adjusts setpoint
• Diesel generator maintains compressor for air start of CAT generators
• CAT and Deutz generators controls do not communicate
• Manual load add/shed by operators
MICROGRID OPERATION

UTILITY TRANSMISSION

138 – 13.8kV Delta-Wye

SOUTH CAMPUS

4 X 3.2MW

CAMPUS FEEDERS

2000’

NORTH CAMPUS

138 – 13.8kV Delta-Wye

3 X 3MW

5000’
Microgrid Mode

- Load swings absorbed by CAT generators only
- Manually transfer load to Deutz generators
 - Operator manipulate baseload setpoint
- Minimal modifications required to implement
 - Small starting air compressor DG
 - Substation relay settings modification
- Control systems unchanged
- Detailed operations procedure required
Summary

- No Two Microgrid Systems are Identical
- Multiple Platforms with Differing Requirements
- Similar Set of Design Considerations
- Competing Agendas Between Stakeholders
- More Automation – More Complexity – Higher Cost
- Establish and Document Design Basis
CONTACT
Michael Dempsey, P.E.
Electrical Department Manager
P 817-733-8186
E mdempsey@burnsmcd.com