

Agenda

- ▶ To identify the importance of a Utility Master Plan and the need to revisit it over time.
 - Utility Master Plan
 - Evolution of a Plan
 - Execution of a Plan
 - (Re)Evaluation of a Plan
 - GRU/South Energy Center Case Study

Evolution of Plan

We must start somewhere.

Utility Master Planning – Typical Results

Building Forecast (Campus Master Plan)

- Location
- •Building Type
- •Expected Completion Date

Load Development

- Existing Loads
- Future Loads

Utility Service Analysis

- Capacity Analysis
- Equipment
- Piping/Power
- •Service Location
- •CUP
- Local
- •Third Party

Financial Analysis

- •Forecasted Annual Life Cycle Costs
- Capital Cost
- •Sensitivity Analysis

Utility Master Plan – Road Map

•+10 year, +20 year, Implementation Guide

Utility Master Planning

Long Term +5

years

Gainesville Regional Utilities South Energy Center

- ▶ 2006 UF Health Shands Cancer Hospital Campus Master Plan Completed
 - Phase 1 Cancer Hospital; 500,000 SF, Level 1 Trauma
 - 35 Year Plan 3,000,000 SF, 1200 bed
- GRU/Shands Partnership
 - Partnership between hospital and municipal utility
 - Combined heat & power for efficient generation of utilities
 - Multiple levels of redundancy
 - Capable to fully island
 - Capable of providing all critical loads
 - Fully load diesel generators during testing
 - CHP yields 80% efficient operation
 - Hospital achieved LEED Gold certification thanks to Energy Center
 - Concentrate on core business

- ▶ 2008 South Energy Center Phase 1 Complete
 - South Energy Center
 - 4.6 MW recuperated CTG
 - 45,000 lb/hr Fired HRSG
 - 30,000 lb/hr back-up boiler
 - 4,200 Tons of chilled water
 - 500 kW black start diesel
 - 2,250 kW emergency diesel
 - Future Expansion Plans
 - 4.6 MW CTG w/ HRSG
 - 2,250 kW emergency diesel
 - 1,500 ton chiller

- ▶ 2013 Shands Expansion
 - Evaluation of existing assets
 - Business Model Evaluation
 - Capacity Evaluation
 - Change in Plans?
 - Forecasted Loads vs. Real Loads
 - Thermal loads <30%
 - Campus/Building implementation plan changed
- ▶ 2014 GRU completes Expansion Feasibility Study

- Results of Feasibility Study
 - Installation of Reciprocating Engine
 - Addition of hot water generation capacity
 - Larger chillers (3,000 ton chillers)
 - Additional cooling tower capacity
- Economic Analysis
 - Prime Mover Options:
 - CTG (~4.6 MW)
 - REG (4-9 MW)
 - Chilled Water Options:
 - Replace Existing Steam Chiller
 - Add Electrical Chiller
 - Add Steam Chiller

- > 7.4 MW Power Generation
- ► 8,775 lb/hr 110 psig steam
- ▶ 8,500 MBH of 140°F- 160°F Hot Water

The Importance of Revisiting a Utility Master Plan

Summary:

Questions/Answers?

John Lee, PE \ Burns & McDonnell Associate | Project Manager O 919-900-1865 \ M 919-609-7786

<u>jrlee@burnsmcd.com</u> \ <u>burnsmcd.com</u>

Chuck Heidt, PE \ Gainesville Regional Utilities
Project Manager
O 352-393-1735 \ M 352-213- 1735
heidtcs@gru.com

