Optimizing Design for Conversion From Steam to Hot Water

Mark Spurr FVB Energy Inc.

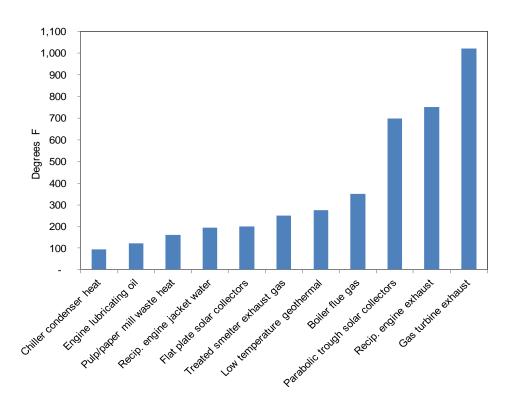
International District Energy Association

Campus Conference

March 8, 2018

Global Presence Local Solutions

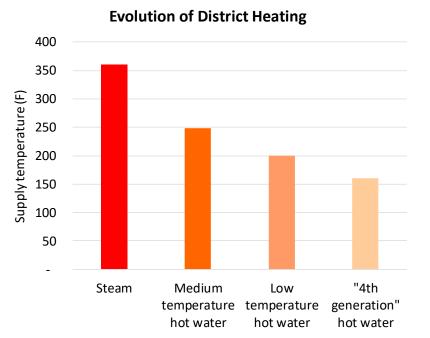
45 Years of Experience in Sustainable District Energy Systems


Agenda

- Why get into hot water?
- Design trade-offs
- District hot water temperatures
- Building conversion
- Heat sources
- Distribution piping
- Conversion phasing

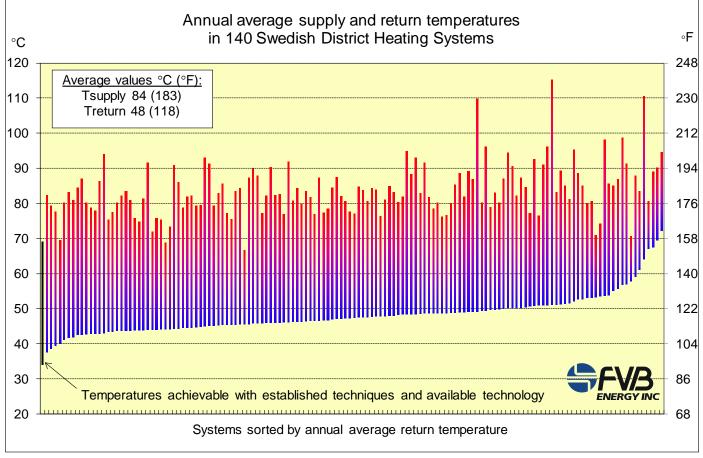
Why Hot Water?

- Broad array of energy sources with lower temperature hot water
- Reduced heat losses
- Lower capital costs
 - Direct buried installation more practical
 - Lower piping and component material costs
 - Reduced expansion compensation requirements
 - No anchor blocks required in most cases



- Lower O&M costs
- Hot water is storable on a daily or seasonal basis

Hot Water Temperatures Coming Down


- Strong trend toward reducing hot water temperature
- "Generations" of district heating
 - 1. Steam
 - 2. Hot water peak supply temp >100°C (212°F)
 - 3. Hot water peak supply temp 80-100°C (176-212°F)
 - 4. Hot water peak supply temp <65-75°C (149-167°F)
- Legionella in DHW is a concern, particularly during summer

Hot Water Temperatures Coming Down

- Swedish DH system temps have been dropping
- Most systems are now in 3rd or 4th generation

• Pipe?

• Plant?

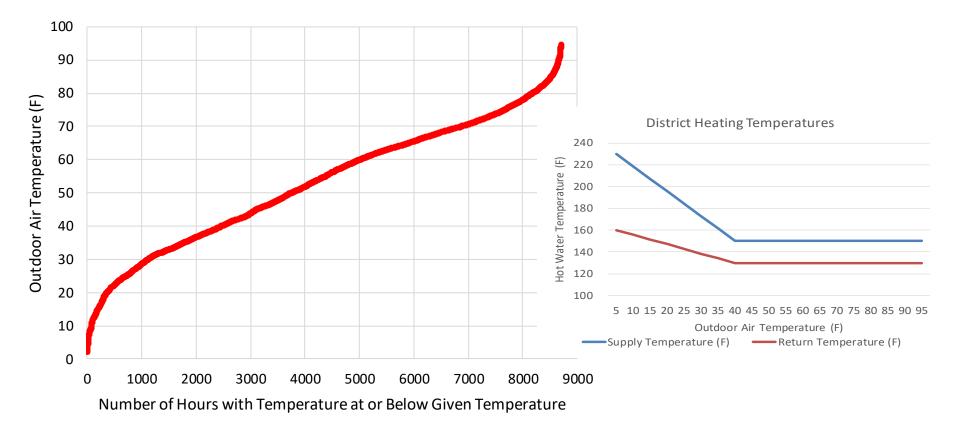
• Building systems?

• All three!

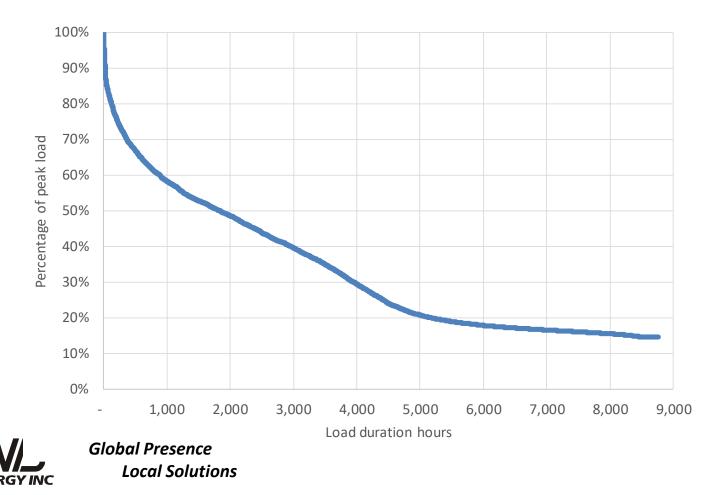
Design Trade-offs

- Life-cycle analysis of cost trade-offs is critical!!
- Assess the impact of alternative Hot Water District Heating (HWDH) supply and return temperatures on
 - Conversion of building systems
 - Dispatch of heat sources
 - Distribution piping materials
- Phased approach to hot water temperatures may facilitate capital cost reductions

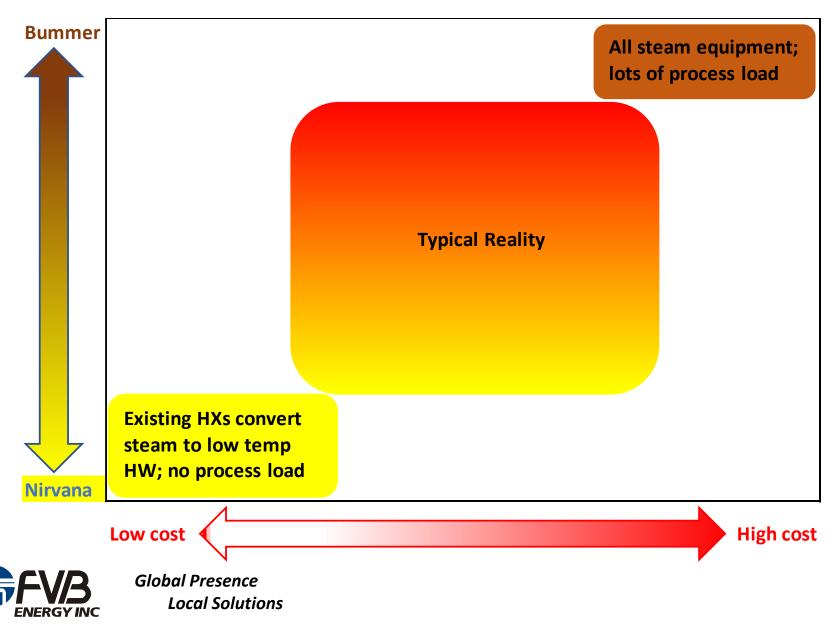
Temperature scheme has impact on


- Capital cost for
 - Building conversions
 - Distribution system
- Access to alternative energy sources, thereby affecting
 - Energy costs
 - Energy efficiency
 - Carbon emissions
- Distribution heat loss
- Pumping cost

- Both absolute temperatures and Delta T are important
- Higher HWDH temperatures help reduce building conversion costs
- Lower HWDH temperatures
 - Enhance the ability to use low-temperature heat resources such as heat pumps
 - Lower distribution heat loss
 - Facilitate use of plastic piping (if not constrained due to pressure)
- Higher Delta T
 - Reduces distribution system capital costs
 - Facilitates lower operating costs for pumping



• Consider temperature duration curve in conjunction with potential HWDH reset schedule


- Consider load duration curve. In example below:
 - 1,878 hours when load was more than 50% of peak
 - 136 hours when load was more than 80% of peak

- Heat pumps operate at relatively low temperatures, and are most efficient at lower temperatures and with lower temperature lift
- HWDH supply temperature can be boosted for a relatively small number of annual hours
- Allows reduction in distribution pipe size/cost and facilitates a reduction in building conversion costs
- Trade-off is a marginal increase in energy costs, and elimination of the option of plastic pipe

Building Systems Conversion

Building Systems

- What are the characteristics of the building systems?
 - Steam to hot water (HW) heat exchangers
 - Steam or HW perimeter heat
 - Steam or HW reheat coils
 - Steam pre-heat coils
 - Process loads
- Depending on HWDH temps, may be able to
 - Retrofit AHUs non-invasively
 - Reuse low pressure steam radiation

Heat Sources

- Local low-carbon energy resources vary significantly
- Climate affects the magnitude and balance of heating & cooling loads, and thus opportunities like chiller heat recovery & ground source heat pumps
- Thermal storage can help optimize use of low-carbon heat sources
- Local site availability and geologic conditions affect options for seasonal storage

Distribution System

- In assessing distribution piping material alternatives
 - Consider all mechanical and civil costs for procuring and installing piping, fittings and valves, and accommodating thermal expansion
 - Perform life cycle assessment accounting for long-term heat losses and maintenance costs
- With EN253 distribution system there is a wide range of pre-insulated fittings and valves
- System pressures are a potential constraining factor with plastic pipe such as PERT and PEX

Conversion Phasing

- Phasing <u>by precinct</u> of building conversion and installation of hot water distribution
- Phasing of <u>district hot water temperatures</u> may facilitate reduction of capex by taking advantage of:
 - Retrofit or replacement of buildings and/or building systems
 - Construction of new buildings designed for low temperatures
- Careful planning to minimize disruption to campus operations

Thanks for your attention!

Mark Spurr Phone: 612-607-4544 Email: <u>mspurr@fvbenergy.com</u>

Global Presence Local Solutions

45 Years of Experience in Sustainable District Energy Systems