

DISTRICT ENERGY AND SUSTAINABILITY

2014 College & University Conference

Positive proof of global warming

IMPACTS OF U.S. BUILDINGS ON RESOURCES

40% primary energy use* 72% electricity consumption*

39% CO₂ emissions*

13.6% potable water consumption**

Sources: *Environmental Information Administration (2008). EIA Annual Energy Outlook. U.S. Geological Survey (2000). 2000 data

Leadership in Energy and Environmental Design

A leading-edge system for certifying the greenest performing buildings in the world

Green Building is in Demand

Square Footage of Commercial LEED Certified Projects (Cumulative)

© U.S. Green Building Council, 2011

*As of March 2011

What does this mean for me???

- Are your Campus DES Goals and Sustainability Goals aligned?
- Is your product or design limiting the potential of your customers from achieving their goals?

Traditional Sales

- Savings on Up-Front Capital and On-Going Maintenance Costs
- Saves Valuable Space
- Effective Management Of Cooling and Heating Costs
- Enhanced Reliability

What Matters?

Your District Energy System's impact on:

Energy

The Environment

Recent History of Sustainable Building's

- □ ASHRAE 90.1
- □ ASHRAE 62
- LEED Rating System
- □ Appendix G
- □ ASHRAE 189.1

Recent History of Sustainable Building's

- □ Version 2.1
- Intro DES Guide
- LEED 2009
- DES Guide Update
- □ LEED v4

Recent History of Sustainable Building's

- Building applicants now have the option of using LEED 2009 or LEED v4
- In summer 2015, LEED v4 is the only option

Good News! It is all in the reference guide now.

 Good News!
Now get credit for water
savings with
Cooling Towers.

Bad News! Not with District Energy Systems.

Demand Rates
Expanded
Thermal
Storage Benefit
still exists

□ CFC's! The option to develop a phase out study has been dropped.

Energy More Options Higher targets

ASHRAE 90.1

ENERGY USE IN DOLLARS

District Energy Analysis

Code Minimum Comparison

Real Comparison

LEED Advantages of District Energy Systems

- Energy Efficiency
 - Generation Improvements

 - Innovative Heat Syncs
 - Distribution Efficiency Improvements
 - Thermal Storage

Combined Heat and Power (CHP) in DES

Renewable Energy

On-Site Renewable Energy Credit 2 – Eligible Renewables

- Photovoltaic Systems
- Wind Energy Systems
- Solar Thermal Systems
- Biofuel-Based Electrical
- Geothermal Heating Systems
- Low-impact Hydroelectric
- Wave & Tidal Power
- Landfill Gas

RMF Engineering Reliability, Efficiency, Integrity,

- Untreated Wood Waste
- Agricultural Crops or Waste
- Animal Waste & Other Organic Waste

On-Site Renewable Energy Credit – Ineligible Systems

- Wood coated with paints, plastics, or formica
- Ground Source Heat Pumps
- Combustion of municipal solid waste
- Forestry biomass waste other than mill residue
- Treated wood

 All Bad News!
Possible points reduced from seven to three!

What's the Future Hold for DES???

 More Pressure for Energy Savings!!!
Need for Innovative District Energy!

What's Your Organization Done for You?

- Helped write the first three versions of the DES Guideline (NC & EBOM)
- Worked on LEED 2014 Update
- User Guide on IDEA Website
- Education
- □ ASHRAE 189.1
- Quarterly Column

What should you do?

- Have a study of your system completed
- Consider adding renewable energy, and CHP to your system
- Change your marketing brochures
- Develop a one stop location for LEED information on your system
- If Energy is a component of your value proposition, have a energy model of your system completed

What I can't do

Figure out how many energy points a building gets from tying into my DES.

What I can do

Figure out whether the building will get more, less, or the same amount with DES versus

alternatives!

Case Study – DES with CHP

Typical Electric Production = 33% efficiency

- □Electrical = 25%
- □Steam = 50%

□CHP = 75%

Case Study Numbers

For every 1 MMBTU of Steam Required, the Plant Uses 2.66 MMBTU's of Natural Gas

Case Study Numbers

For every 1 MMBTU of Steam Required, the Building receives credit for 0.23 MWh of Free

Electricity.

Real Comparison

Annual cost of energy in \$

43

Our Variables

Natural Gas Costs: \$6.30/decatherm Electrical Cost = \$0.07/KWh Bla Bailor Eff =

Blg. Boiler Eff. = 80%

Modeling Methodologies

Modeling Methodologies

Case Study: How Does DES Compare?

 \Box Cost of Heat = \$0.67/MMBTU **□80%** Efficient **Building boiler** Cost of Heat =\$7.88/MMBTU

What if Natural Gas Goes Up?

\$/MMBTU

Natural Gas Costs (\$/THERM)

How Low Would Electricity Have to drop?

Electricity Costs Sensitivity Analysis

49

How efficient would your building boiler have to be?

Boiler Efficiency Sensitivity Analysis

New Motto from the GA Governor

 Quarterly Column in District Energy Magazine
tim.griffin@rmf.com
919.941.9876

