GENERATOR HUB: THE CRITICAL BUILDING WE HOPE TO NEVER NEED

AGENDA

- *** PROJECT BACKGROUND**
- *** EVOLUTION OF EMERGENCY POWER**
- CHALLENGES
- DESIGN PROCESS
- LESSONS LEARNED

BACKGROUND: MODERNIZING THE HEALTH CARE CAMPUS

- New construction: 350 bed new patient tower
- Existing generators without available capacity
 - » Individual units installed spread around campus
- Existing bed towers planned for complete renovation

GENERATOR PHASING - RENOVATED BED TOWER - 582 Beds

BACKGROUND: GEN HUB SOLUTION

No Space at the New Tower + Existing Tower Renovation
 = Centralized Generator Plant Option

» Medium Voltage? Emergency Only?

BACKGROUND: EMERGENCY POWER PHILOSOPHY

H

GEN HUB CONCEPT

Only Select Emergency and Optional Power

 No Peak Shave, Curtailment, Storm Avoidance

 Centrally Located

 Medium Voltage Generation and Distribution
 Robust, Resilient, Reliable

GEN HUB RESULTS

Medium Voltage, N+1, Expandable
 » 8.25MW Installed, 12MW Future

- Centrally Located
 - » Best for Distribution, Worst for Construction & Disturbing the Health Care Environment
- Team Effort Required

PROJECT CHALLENGES

- Immovable deadline
- Escalating costs: pressure to pre-purchase
- Highly visible site

GENERATOR PLANT CONCERNS

SITE CHALLENGES

- Patient Experience
- Recirc Concerns
- ✤ Existing Utilities
- ✤ OA Louvers

OUTSIDE AIR INTAKE LOUVERS

ACOUSTIC CONSTRAINTS

- Building OccupantsFGI Guidelines
- ✤ Distance

- Line of Sight
 Inline Attenuators
- Acoustic Louvers

ACOUSTICS VS. AIRFLOW

- Free area = sound line of sight
- Attenuation = airflow resistance
- Extensive coordination between subs

ATTENUATION

ACOUSTIC REQUIREMENTS

FOOTPRINT

AIRFLOW CFD ANALYSIS

- Radiator Backpressure
 Site Air Recirculation
 Inside Air Stagnation
 CO₂ Dispersion
- ✤ Guide Vane Design

DESIGN ITERATION

FINAL DESIGN

FINAL DESIGN

FINAL DESIGN

LESSONS LEARNED

- FGI subject to interpretation on gen noise
- Airflow subconsulants are experts in CFD, not generators
- CFD reveals what hand calcs cannot
- Work with Authorities Code Interpretations.

KEY TAKEAWAYS

- Keep Owner Involved
- Make Time for Iterative Design
- Compromise where you can; Emergency Power is the Goal.

