Data and Validated Results Lead to Optimized Utility Operations

Ken Wysocki – Emory University

Chris Angerame - utiliVisor

AGENDA

- 1. Can Data, Oversight and Action Result in Enhanced Operations and Optimized Plant Performance?
- 2. Description of Utilities on Campus
- 3. Operational Culture
- 4. Operational Constraints
- 5. Future Challenges of Campus Needs
- 6. Planning for Expansion
- 7. Implementation of Continuous Oversight and utiliVisor Operations Center
- 8. What utiliVisor and Emory University Accomplished
- Benefits Beyond the Savings
 10. Collaboration Moving Forward

Description of Utilities at Emory University

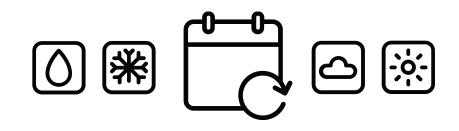
- WMB Plant
 - (6) PCHWPs-30 to 75 HP
 - (6) CWPs-40 to 100 HP
 - (9) CTs-25 to 30 HP
 - SCHWPs-40 to 250 HP
 - WMB 1-650 Tons (0.605 kW/ton)
 - WMB 2-950 Tons (0.642 kW/ton)
 - WMB 3-1250 Tons (0.60 kW/ton)
 - WMB 4-950 Tons (0.642 kW/ton)
 - WMB 5-1000 Tons (0.579 kW/ton)
 - WMB 6-1200 Tons (0.60 kW/ton)
- Quad Plant

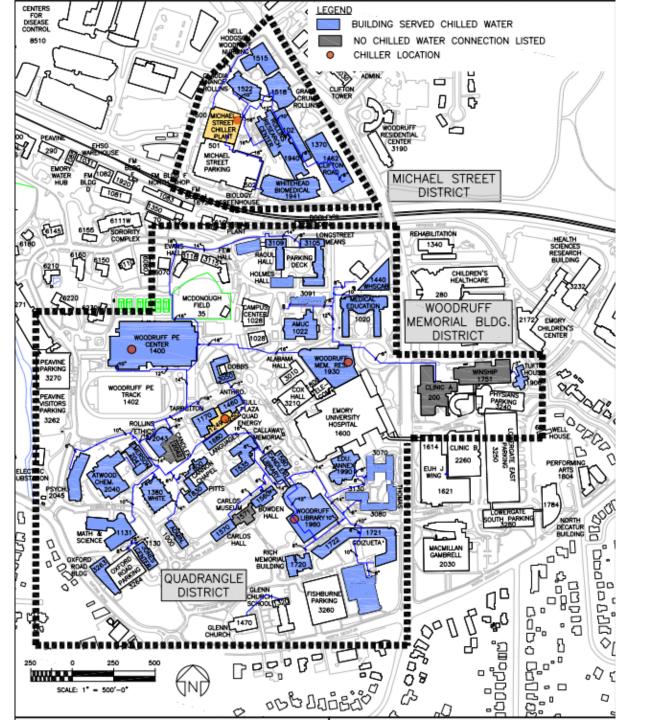
20,000 tons of cooling

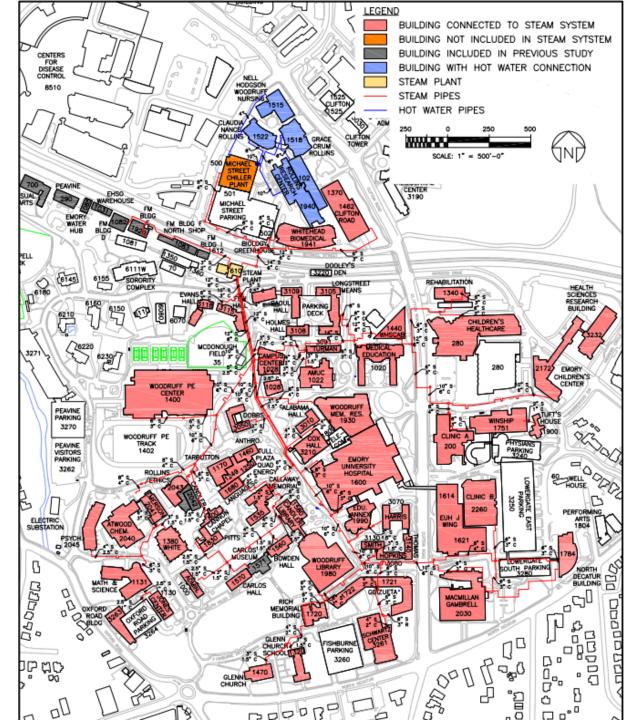
1 MW steam turbine

500,000 lb/hr steam loop

- (5) PCHWPs-125 to 150 HP
- (5) CWPs-40 to 100 HP
- (4) CTs-40, 50, 75 and 100 HP
- Quad 2-1250 Tons (0.631 kW/ton)
- Quad 3-1000 Tons (0.546 kW/ton)
- Quad 4-1250 Tons (0.660 kW/ton)
- Quad 5-1250 Tons (0.660 kW/ton)


- Michael Street Plant
 - (8) PCHWPs-20 to 60 HP
 - (7) CWPs-100 HP
 - (6) CTs-40 HP
 - (6) SCHWPs-100 to 200 HP
 - MSP 1-1000 Tons (0.627 kW/ton)
 - MSP 2-1000 Tons (0.627 kW/ton)
 - MSP 3-550 Tons (0.611 kW/ton)
 - MSP 4-1000 Tons (0.546 kW/ton)
 - MSP 5-1250 Tons (0.631 kW/ton)
 - MSP 6-1250 Tons (0.555 kW/ton)
 - MSP 7-1300 Tons (0.560 kW/ton)


Operational Culture


- Motivate the staff by showing positive outcomes and benefits of taking action
- Address any tribal myths about operations
- Enhance operational knowledge with continuous education for staff with energy engineering
- Communicate using KPIs, data, and graphical representation with staff and engineers on campus
- Help short-staffed operations team be effective in their efforts
- Reward the team with validated results

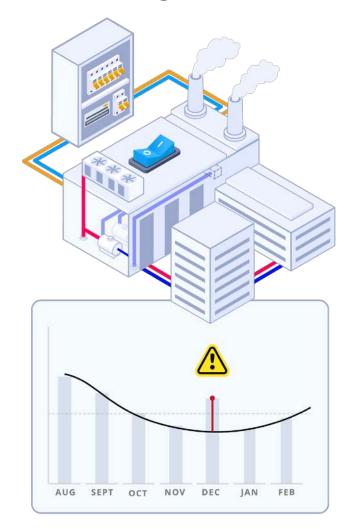
Operational Constraints

- Understanding campus performance from multiple plants
- Developing 8760 that reflects holistic performance of utility plants with granular detail on every subsystem
- Validating PID operational strategies
- Addressing tribal myths and methodologies around operations
- Maximizing variable speed drive investments
- Substantiating the cost of deficiencies and/or workarounds
- Effectively communicating with documentation on observations
- Identifying, calculating, and ensuring effective deployment of energy conservation measures
- Communicating to non-technical shareholders and executives the cost of decisions as they relate to utility plant production and distribution

Current Conditions and Future Planning for Expansion

- 1. Spring 2021 Replaced 2 centrifugal chillers and 1 air-cooled chiller for main campus network cooling facility
- 2. Winter 2021/2022– Replacing 3 chillers (#1,2,3) at Michael Street chiller plant
- 3. Spring 2022– New Health Science Research Building coming online with 2 centrifugal chillers
- 4. Spring 2022– New Rollins Research Building coming online, which will be connected to Michael Street chiller plant
- 5. Three-year plan
 - a. Fully automate Quad-WMB chiller loop cross-connect
 - b. Begin upgrading chiller plant controls to Rockwell PLC (currently Siemens BAS)
 - c. Perform update to campus-wide chiller master plan for capital planning
 - d. Replace 1–2 chillers in Quad chiller plant

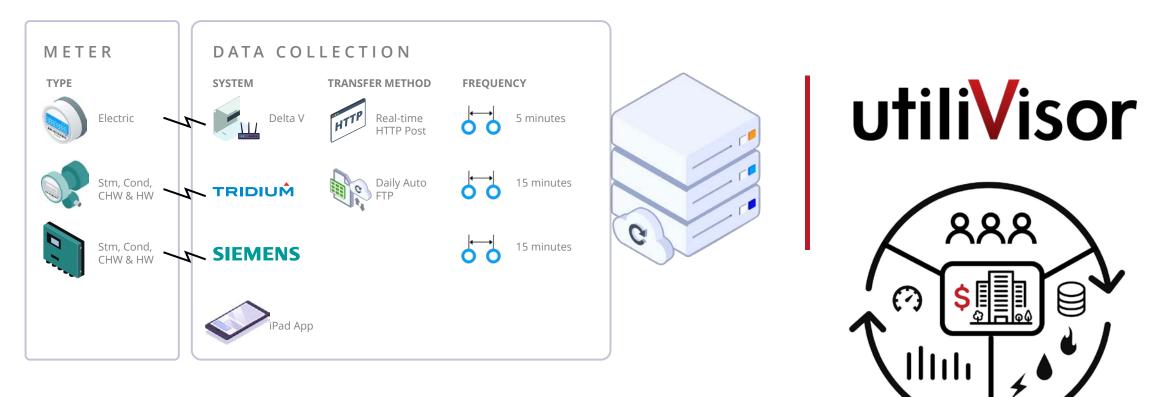
Concerns from the University


Owner Benefits:

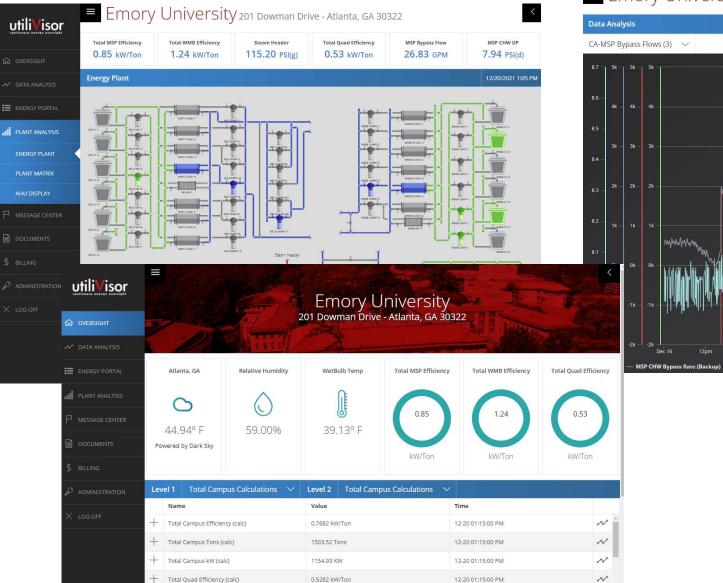
- Protect capital spend on equipment. (Maximizing the benefit of \$ spent on equipment purchases)
- Holistically produce lowest cost of utility production. (Maximizing technologies across all systems: chillers, pumps, cooling towers, etc.)
- Provide a system where resources and technology could be applied to enhance building engineers' operational knowledge and support a learning environment for utility shareholders.
- Qualify and maximize utility/regulatory incentives.
- Validate operational excellence and identify implementations and paybacks (pre and post) to continuously plan for the future.

WORKING WITH UTILIVISOR AND THEIR APPROACH

Emory's Plan and Goals



Energy Plant Oversight


- 1. Looks at granular relationship of plant equipment to the BOP (balance of plant)
- 2. Makes recommendations to the SOP or PID controls operator to be implemented into the BAS based on site's operational data
- 3. Identifies drift & energy conservation measures and allocates an unobtained cost associated with the deficiencies and ECMs
- 4. Graphically explains and validates savings from implemented strategies
- 5. Allows for pre- and post-benchmarking on operational conditions from yearly maintenance
- 6. Scales to other building operations for holistic optimization

HOW WE IMPLEMENTED THE PROJECT

Multiple Utilities = Multiple Meters = Multiple BMS Systems

UTILIVISOR'S INTERFACE

Emory University 201 Dowman Drive - Atlanta, GA 30322

ysis							Stats
ypass Flows (3) 🛛 🗸	12/16/2021 12:00 AM to 12/20/2021 11:59 PM	00+	0		⊥	×	Average
5k 5k						Т	MSP CHW Bypass Rate (Backup) 1,169.55 GPM
4k - 4k						-	MSP CHW Bypass Flow (Master) 1,151.46 GPM
3k - 3k	M.	on December 20, 202 MSP CHW Bypass	1 1:10 pm Rate (Bac	kup): 77. 9	91 GPM		MSP CHW Bypass Rate (Master) 1,165.10 GPM
JK – JK –	•	MSP CHW Bypass MSP CHW Bypass MSP CHW DP (Bac	Flow (Mas Rate (Mas	ter): 26.8	3 GPM		MSP CHW DP (Backup) 8.00 PSI(c
2k 2k						_	Maximum
	Hoperson & Margare Margare Margare and	~/					MSP CHW Bypass Rate (Backup) 2,622.37 GPM
1k - 1k - Myhhhyhhmmmm - 14 - 1		mount	and the second	ትንብዮንተሳ	n	4n -	MSP CHW Bypass Flow (Master) 2,584.32 GPM
	m, waxa, Alban, Alban, Andria				ul d		MSP CHW Bypass Rate (Master) 2,617.03 GPM
-1k1k	hiller 4 (#1 in Sequence)						
	· Chris Angoramo						

From: Chris Angerame Subject: MSP Chiller 4 (#1 in Sequence) Date: 12/9/2021 11:09 AM -05:00 Attachment: MSP Ops below 60 Deg.F (OAT).pdf

0

<

Good Morning Ed,

Dec 16

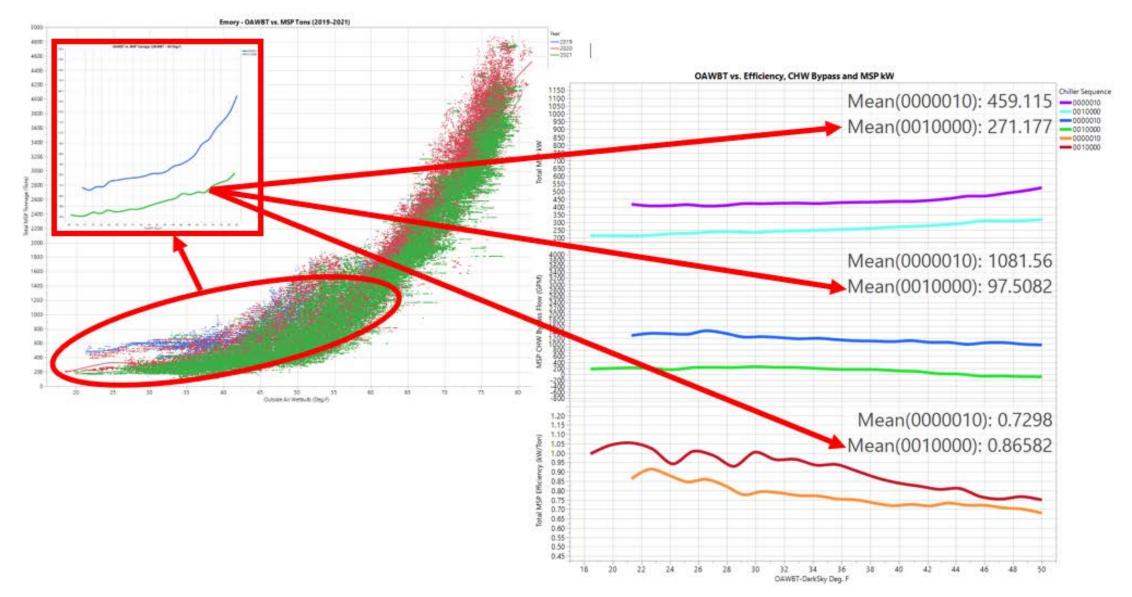
Monitoring MSP operations when the plant transferred load to Chiller 4, I have highlighted in the attachment the (2) major benefits of this being the lead chiller in the sequence; 1. Least amount of CHW Flow Bypassed w/ Chiller 4 operating alone 2. Total Plant Consumption the lowest w/ Chiller 4 operating alone

I see that Chiller 6 is #2, with Chiller 5 #3. These are both very close in performance where I would leave Chiller 6 as #2 with the higher expected OATs within the next few days. However once we get steadily below 60 Deg.F (OAT) I would make Chiller 5 #2 (Chiller 6 has a higher base load < 50 Deg.F OAT). Keep up the great work! Regards, Chris Angerame

MSP Ops below 60 Deg.F (OAT).pdf

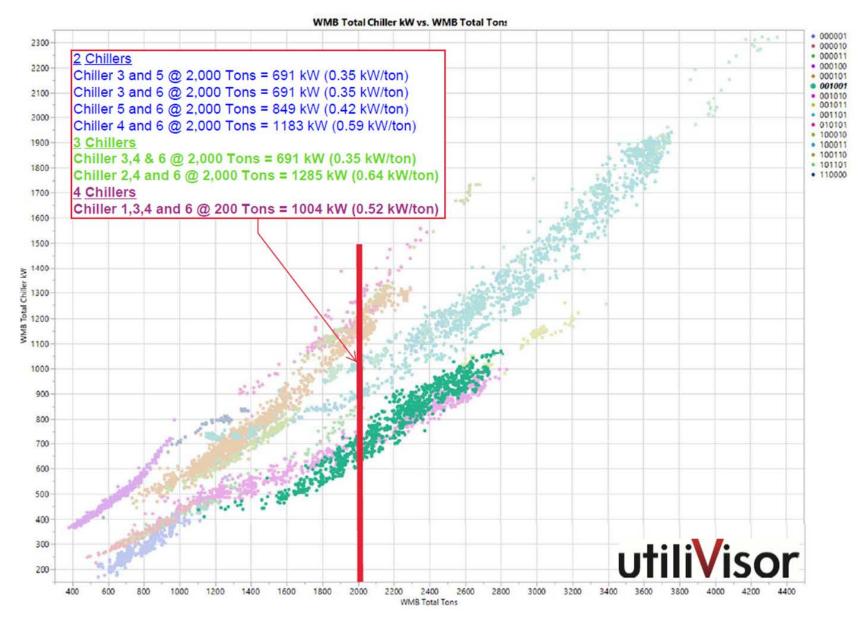
Three Main Chilled Water Loops

Initial Focus – Michael Street

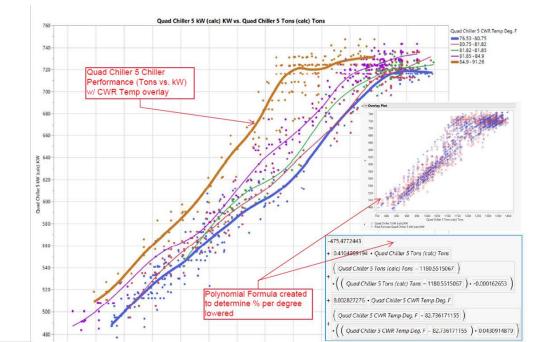

- Profile Load (Tons) vs. OAT, OAWBT, Day of Week, and Time of Day
- Profile Tons vs. Total Plant kW & Cost/Hr and/or Cost/Ton
 - Utilized interval data within utiliVisor's application (data analysis graphs) and statistical software (JMP)
 - Outliers are the focus, as they indicate the following:
 - Operating incorrect chiller at specific loads
 - Operating too many chillers/pumps/cooling towers
 - Excessive CHW bypass flow
 - Enhance automatic reset schedules (if in place)

Three Main Chilled Water Loops (Cont'd)

Initial Focus – Michael Street


- utiliVisor implemented optimal chiller sequence

 Less water bypassed (reduced tonnage profile)
 Auxiliary savings achieved from smaller pumps combined w/ seasonal CHW DP reset
- utiliVisor also identified "overlapping" chillers ON for extended hours when tonnage reduced overnight/weekends
- Once ECM is implemented, in addition to tracking in our monthly energy report, utiliVisor created real-time performance calculations (which forecast expected load/operating costs based on upcoming weather conditions). If outside a user-defined threshold, our operations center receives this alert and will contact the client to adjust current operating strategy.



Expansion to the Additional Plants

- Adjusted condenser water return temperatures for chiller head pressure control
- Reduced condenser water flow on newer chillers
 - Increased CWP efficiency without any impact on chiller part load performance
- Cooling tower sequencing utilizing different size fans/tower based on total GPM flow
 - Provided breakpoints in chiller efficiency vs. increase in CT consumption
 - Profiled CT performance for %flow/cell vs. condenser water delta T

16

1300

1350

1400

Quad Chiller 5 Tons	Quad Chller 5 CWR Temp	Quad Chiller 5 kW	Quad Chiller 5 Efficiency	%/Degree Lowered	050 1100 1150 1200 1250 Chiller 5 Tons (calc) Tons
1000	85	610	0.6102		
	84	602	0.6020	-1.34%	
	83	594	0.5940	-1.34%	
	82	586	0.5860	-1.34%	
	81	578	0.5781	-1.35%	
	80	570	0.5703	-1.35%	
	79	563	0.5625	-1.35%	
	78	555	0.5549	-1.36%	
	77	547	0.5474	-1.36%	
	76	540	0.5399	-1.36%	
	75	533	0.5325	-1.37%	

			Tonnage	Chiller CW Flow
Chiller 2	York	SEJM-964800 / 2000	1250	3000
Chiller 3	Trane	L95H08225 / 1995	1000	2400
Chiller 4	York	YFAM882154 / 1992	1250	3000
Chiller 5	York	YFAM882153 / 1992	1250	3000

[Flow/Cell 80.00%			Flow/Cell 72.00%		Flow/Cell 66.67%
%Speed	CT-2 Operating	%Speed	CT-2	CT-1 & 2 Operating	%Speed	CT-4 Operating
25	0.47	25	0.47	1.05	25	0.87
30	0.81	30	0.81	1.81	30	1.51
35	1.28	35	1.28	2.88	35	2.40
40	1.91	40	1.91	4.30	40	3.58
45	2.72	45	2.72	6.12	45	5.10
50	3.73	50	3.73	8.39	50	6.99
55	4.96	55	4.96	11.17	55	9.31
60	6.45	60	6.45	14.50	60	12.09
65	8.19	65	8.19	18.44	65	15.37
70	10.24	70	10.24	23.03	70	19.19
75	12.59	75	12.59	28.32	75	23.60
80	15.28	80	15.28	34.38	80	28.65
85	18.33	85	18.33	41.23	85	34.36
90	21.75	90	21.75	48.95	90	40.79
95	25.58	95	25.58	57.56	95	47.97
100	29.84	100	29.84	67.14	100	55.95

Quad Design

HP

50

40

100

75

kW

37.3

29.84

74.6

55.95

GPM CTs

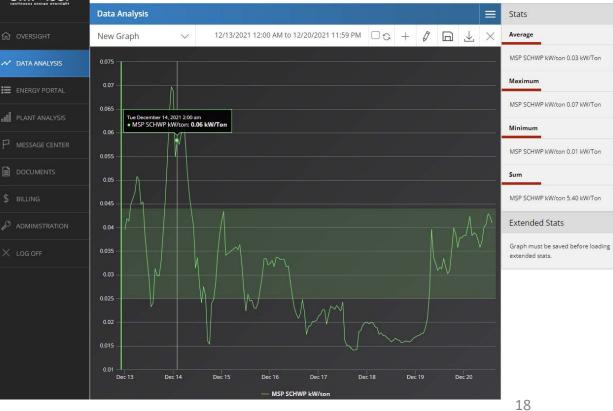
3750 CT-1

3750 CT-2

7500 CT-3

4500 CT-4

			Mich	ael Street Ch	iller Efficiency								
	0.6270	0.6270	0.6110	0.5460	0.6310	0.5550	0.5600	MSP PCHVP	MSP SCHVP	MSP CVP	MSP CT		
	MSP Chiller 1	MSP Chiller 2	MSP Chiller 3	MSP Chiller 4	MSP Chiller 5	MSP Chiller 6	MSP Chiller 7	kW/ton	kW/ton	kW/ton	kW/ton		
Oct-19	0.7137	0.7552	0.5174	0.5308		0.3966	0.5445	0.0409	0.0447	0.0805	0.0163		
Nov-19	-	-	0.4560	0.6849	-	0.4186	0.5530	0.0538	0.0509	0.0911	0.0096		
Dec-19	0.8023	0.7752	0.4739	0.5068		0.4129	0.7136	0.0529	0.0404	0.1010	0.0117		
Jan-20	0.8136	0.7330	0.4927	0.5393		0.4436	0.6122	0.0583	0.0462	0.1367	0.0163		
Feb-20	-	0.7944	0.4965	0.5130	0.7214	0.3946	0.5335	0.0425	0.0349	0.1511	0.0200		
Mar-20	0.8003	0.7900	0.4889		0.5570	0.3692	0.5234	0.0443	0.0352	0.0985	0.0235		
Apr-20	0.9370	0.7482	0.4870	0.5683	0.5285	0.3749	-	0.0449	0.0361	0.1110	0.0209		
May-20	-	0.7310	0.4954	0.6408		0.3701	0.5236	0.0381	0.0283	0.0920	0.0211		
Jun-20	0.7632	0.7865	0.5248	0.5885	0.6272	0.3798	0.5372	0.0365	0.0273	0.0750	0.0236		
Jul-20	0.8975	0.7947	0.5447	0.6007	0.6264	0.3909	0.5599	0.0366	0245	0.0772	0.0252		
Aug-20	0.8277	0.7659	0.5454	0.6274	0.6330	0.4008	0.5726	0.0376			hory Universi	ty 201 Dowman Drive - Atla	anta GA
Sep-20	0.8259	0.7689	0.5393	0.6220	0.5855	0.3935	0.5620	0.0394	utiliViso				incon or
Oct-20	0.7641	0.7232	0.5046	0.7892	0.5771	0.3823	0.5724	0.0405	continuous energy eversigh	1 S22 PAA 32			
Nov-20	0.7373	-	0.4833	-	0.5812	0.4001	0.5949	0.0513		Data Analy	sis		
Dec-20	0.6932	1.2868	0.4991	1.1136	0.5867	0.5404	-	0.0512					
Jan-21	0.7571	1.0874	0.5241	-	0.6077	0.4660	-		① OVERSIGHT	New Graph	✓ 12/13/2021	12:00 AM to 12/20/2021 11:59 PM	3 +
Feb-21	0.6860	-	0.5267	-		0.4038	0.7047	0.0479		1			
Mar-21	0.7611	0.7866	0.5102	0.7035	0.5615	0.5102	0.5615	0.0552	💉 DATA ANALYSIS	0.075			
Apr-21	0.8085	0.7933	0.5035	-	0.5125	0.4789	0.6158	0.0482					
May-21	0.7926	-	0.5176	-	0.5639	0.4829	0.5673	0.0447		0.07			
Jun-21	0.8087	0.7530	0.5330	-	0.6193	0.4940	0.5974	0.0410	ENERGY PORTAL				
Jul-21	0.8295	0.8439	0.5676	-	0.6332	0.4864	0.6158	0.0410		0.065			
Aug-21	0.8746	0.8559	0.5492	0.5286	0.6261	0.4770	0.5904	0.0394	DI PLANT ANALYSIS	Tue	December 14, 2021 2:00 am		
Sep-21		-	0.5360	0.5231	0.5930	0.4746	0.5803	0.0404		0.06 • M	SP SCHWP kW/ton: 0.06 kW/Ton		
Oct-21			0.5360	0.5576	0.5583	0.4719	0.5865	0.0448					


Timestamp: 12/20/2021 01:00 PM -05:00 Building: 9West57 Solow

Level 1 Name: Total Campus Calculations Level 2 Name: MSP Secondary Chilled Water Pumps Level 3 Name: MSP SCHWP kW/ton

Point values above (0.045) and/or below (N/A) 6 time(s) in the past 2 hour(s).

Login to utiliVisor and View in Data Analysis

Regards, utiliVisor Operations Center

Plant Monitoring Savings to Date \$668,648 18% Since 11/2019 of Chiller Plant Cost

- 1. Increased plant efficiency from revised chiller sequencing
- 2. Revised load profiles from reducing excessive CHW bypass flows and implementing a seasonal CHW differential pressure reset
- Revised auxiliary sequencing based on tonnage profile (chilled & condenser water pumps/cooling towers)
- 4. Extended operations with reduced differential pressures from returning AHU CHW valve control and revised occ/unocc scheduling

Collaboration Moving Forward

- 1. Encourage continuous validation of operational conditions
- 2. Analyze from the cloud; make changes at the plant
 - Collaboration between the data, energy engineers, and operators is critical for successful outcomes.
- 3. View the system as a campus that incorporates the CHP + boiler plant
- 4. Validate new plant projects on campus
- 5. Continue working with the operations staff and training on the system

THANK YOU

EMORY UNIVERSITY

Ken Wysocki Emory University Director of Utilities T 404 727 8465 kenneth.wysocki.jr@emory.edu

utilivisor.

Chris Angerame | VP Engineering utiliVisor 135 West 36th Street | New York, NY 10018 T 212 260 4800 x 227 | M 917 796 8218 christopher.angerame@utiliVisor.com