Modernization of Brock’s District Energy Plant – Preparing for the Future

Brock University

Scott Johnstone
Senior Associate VP, Operations & Infrastructure Services

Mary Quintana
Director, Asset Management & Utilities

Drew Cullen
Manager, District Energy
Agenda

Background and Environment
- Brock University
- Challenges and project rationale
- Original DES

District Energy Efficiency Project (DEEP)
- Phases
- New DES
- Operations

Lessons Learned
- Q&A
Background and Environment

- UNESCO Biosphere Reserve
- Research-intensive
- 19,000+ students
- 2.7M GSF
Background and Environment

Campus Energy History
- 1964: 100% electric campus
- 1992: District Energy System

Campus Evolution (2017)
- Campus growth
 - Students: 18,700
 - Space: 2,421,879 GSF
- Intensified research
- Aging infrastructure
- 31 Buildings
Background and Environment

DES Status in 2017

- 25 MMBTUh (8MWe) for thermal energy
 - 4 MMBTUh of unextractable thermal energy
- 240 degF water system
 - More stringent requirements and oversight
- 6.4 MW in electrical capacity
 - Block load limitation of 820kW
 - Only provides 85% of the campus’ needs
- Equipment at end of life
Background and Environment

Original DES

- 8 CAT3516A engines
- Thermal Energy Storage tank
- Absorption chiller
- Centrifugal chiller
- Distribution in 3 loops
- Hot water boiler
- Exporting electricity to LDC grid
Background and Environment

Project Rationale

- Need for more resilience
- Avoid additional cost
- Growing deferred maintenance
- Reducing carbon emissions
- Increased sustainability awareness
- Tightening environmental regulations
Solution - DEEP

District Energy Efficiency Project (DEEP)

- Different engines and chillers considered

Cost

- Phase I: $10.54M CAD
- Phase II: $7.59M CAD

Construction

- July 2017 – March 2019
DEEP – Phase I

Removed
- 4 CAT3516A
- Old absorption chiller
- HEX-02
- Piping reworks
- Common exhaust

Installed
- 2 new CAT3516H engines
- New absorption chiller
- Direct injection loop
- Integration of piping in distribution loops
- Thermal bypass
- New Master Control Panel (MCP)
DEEP - Transition into Phase II

Rental boiler
- Finding a suitable unit
- Interconnection to existing system

Using other DES assets
- Electric boilers
- Satellite Utility Areas (e.g., Bioscience building)
- TES tank
- Back-up boiler
DEEP – Phase II

Removed
- Remaining 4 CAT3516A
- Old centrifugal chiller

Installed
- 2 new CAT3516H engines
- New magnetic bearing chiller
- Selective Catalytic Reduction system
- New logic and controls

Commissioning
New DES - Operations

Master Control Panel

- **Generated**: 5.74 MW
- **Imported**: 0.28 MW
- **Auto Start/Stop**: Enabled
- **Auto Start Setpoint**: 95% 1,877.2kW
- **Auto Stop Setpoint**: 70% 1,383.2kW
- **Auto Start Delay**: 240s 0s
- **Auto Stop Delay**: 120s 0s

Generator Statistics

- **Generator 4**
 - Total Energy Runtime: 7,937,810 kWh
 - Start/Stop Priority: 2
 - Engine Running: 72%
 - Power: 4,982 hrs

- **Generator 3**
 - Total Energy Runtime: 8,533,349 kWh
 - Start/Stop Priority: 4
 - Engine Running: 73%
 - Power: 5,356 hrs

- **Generator 2**
 - Total Energy Runtime: 14,687,115 kWh
 - Start/Stop Priority: 3
 - Engine Running: 73%
 - Power: 8,558 hrs

- **Generator 1**
 - Total Energy Runtime: 12,563,063 kWh
 - Start/Stop Priority: 1
 - Engine Running: 72%
 - Power: 7,343 hrs
DEEP - Benefits

- Energy savings
- Carbon reduction
- Campus as a living lab
- Increased resilience
- Address deferred maintenance
- Improvements to SCADA system
- Enhanced control on operations
Lessons Learned

• New technologies and learning curves
• Increased operational complexity (transition, Cx)
• Operating with an old distribution system
• Academic and research opportunities
Next Steps

- Additional distributed generation
- Modernize distribution system
- Integrate renewables
- Address inefficient and aging buildings
- Design new buildings to be highly efficient and low-carbon
- Optimization initiatives on DES
Questions?
Thank You!

Scott Johnstone
sjohnstone@brocku.ca

Mary Quintana
mquintana@brocku.ca

Drew Cullen
dcullen@brocku.ca