Designing Desuperheater Options for the University of Iowa Low Pressure Steam System

Ben Anderson – University of Iowa Ben Niedergeses – Stanley Consultants

Agenda

- Introductions
- Overview of Plant & Distribution System
- Low Pressure Steam System Issues
- Design Considerations & Desuperheater Options
- Project Construction
- Impact of Modifications
- Questions & Discussion

Introductions

- Ben Anderson University of Iowa
 - Power Plant Manager
 - BSME from Iowa State University
 - Petro-chemical Background

- Ben Niedergeses Stanley Consultants
 - Mechanical Engineer Energy Business Group
 - BSME from Iowa State University
 - Power Plant Consulting Background

Power Plant Overview

20 psi – LP steam header

OF LOWA

Campus Steam Distribution

Plant Line-up Effect on LP Steam Temp

Campus Concerns & Solution

- High temperature steam damaging equipment
 - Dorms equipped with antiquated steam control system with on/off design
 - Steam trap damage significant
 - Upgraded control system still couldn't handle high temps
- Install Low Pressure (20#) Steam desuperheaters to reliably provide proper steam temp for customers

System Conditions

- Design Criteria
 - Low Pressure Steam Flow:
 - Maximum: 135,000 lb/hr
 - Minimum: 15,000 lb/hr
 - Initial Inlet Steam Conditions: 26 psig, 388°F
 - New Outlet Temperature: 280°F
 - Line Size:
 - East Sideline: 30"
 - North Sideline: 24" reducing to 20" at Bulkhead

East Sideline

- East Sideline Pipe Size
 - 30" Line Sized for Major Future Expansion
 - Current Line Velocity at Minimum Flow: 13 ft/s
 - Vendor RepresentativeSelections Required20 ft/s 30 ft/s

- Steam Assist Desuperheater
 - Requires Medium Pressure Steam Line (150 psig)
 - Achieves Minimum Flow of 25,000 lb/hr (21 ft/s)
- Basic Mechanical Desuperheater
 - Simple and Inexpensive
 - Achieves Minimum Flow of 36,000 lb/hr (30 ft/s)

- Solutions
 - Line Modifications
 - Replace Line with Reduced Size for Required Straight Pipe Length
 - New Piping Parallel to Existing Line
 - Modifications Upstream of 30" Line
 - Accept Higher Minimum Flow
 - 25,000 or 36,000 lb/hr versus 15,000 lb/hr

North Sideline

Design Considerations

- North Sideline Layout
 - Main Tunnel Installation
 - Sufficient Pipe Length to Install Element
 - Desuperheater in Primary Piping Blocks Tunnel Access
 - 24" Pipe in Main Tunnel
 - Reduces to 20" at Bulkhead

Design Considerations

- North Sideline Layout
 - Bulkhead Installation
 - Temperature Element Located Beyond Watertight Bulkhead
 - Limited Downstream
 Pipe Length Available
 - Smaller Pipe Improves
 Low Flow Performance

- Steam Assist Desuperheater
 - Requires Medium Pressure Steam Line (150 psig)
 - Achieves Minimum Flow of 10,500 lb/hr
- Multi-Nozzle Desuperheater
 - Simpler and Less Expensive No Steam Required
 - Achieves Minimum Flow of 15,600 lb/hr

- Solutions
 - Main Tunnel Installation Created an Excessive Obstruction, Bulkhead Installation Pursued
 - Wall Penetration for Conduit
 - No Available Conduit to Utilize
 - Core Drill with Water Seal
 - Vendor's Distance to Element Requirements
 Fit Within the Pipe Length Available

North Sideline Installation

East Sideline Installation

Commissioning & Operation

- Commissioned in December 2014
- Steam Temperature controlled down to 280 F per control loop
 - High temps still noted during cold weather at downstream equipment (confirmed with field measurements
- Troubleshooting with vendor to determine cause
- Planning shutdown for inspection of well and Desuperheater and Thermowell

Questions

