Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 I CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Space reserved for video overlay

Domino Effect: The Importance of Understanding the Big Picture when Sustainability Planning

Justin Grissom, P.E. Nathan Ninemire, P.E

Q&A Will Not Be Answered Live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

Keeping Sustainability in Perspective

- Utilities / Facilities Core Mission
- Defining Sustainability and Resiliency
- Finding a Balance
- Case Studies What Are Peers Doing?
 - Princeton University
 - Bucknell University

Utilities/Facilities Core Mission

Immediate and Ongoing:

- Support and enhance educational mission reliably
- Create an environment that allows students to strive

Long Term Need: Serve sustainably

Defining Sustainability and Resiliency

Space reserved for video overlay

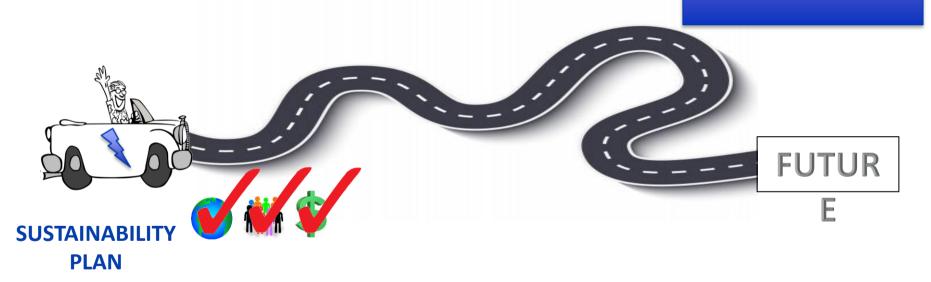
Sustainability *

- the quality of being able to continue over a long period of time
- Planning now for long term goals

Resiliency *

- the ability...to return to its usual shape after being bent, stretched, or pressed
- Planning now for responding to threats to our ability to meet long term goals

* Cambridge Dictionary Definitions



Sustainability Road

Sustainability Road

NOW WHAT?

Space reserved for video overlay

HAZARDS ARISE ALONG THE WAY

FUTUR E

Resiliency planning is for mitigating risks that could compromise your ability to meet long term sustainability goals.

Finding a Balance

Plan for long-term outcomes but use shorter term protections

FIRST: Establish long-term sustainability goals

- Reduce or eliminate carbon
- Provide reliable service / core mission
- Avoid negative externalities
- Triple bottom line

Finding a Balance

Space reserved for video overlay

Plan for long-term outcomes but use shorter term protections

- <u>SECOND</u>: Plan for ways to prevent operational disruption (resiliency) that would prevent you from getting to the long-term.
 - Bridging technologies or fuels to get you to the future (future-proofing).
 - Equipment and/or fuel diversity.
 - Design for operational flexibility.
 - Be "directionally correct"

Example: Princeton Met Student/Society Needs During Superstorm Sandy

EXAMPLE: Resiliency Failure

University Sustainability Efforts

✓ University commits to carbon neutrality.

Space reserved for video overlay

- ✓ Plan to deploy wind/solar, buy "green power", and use energy storage.
- ✓ Transition to full electrification (no scope 1 emissions).
- ✓ Focus on efficiency projects to reduce consumption.

Event Occurs: The Next Great Ice Storm

No sun. No wind. Energy storage depleted. Grid supply is down.

EXAMPLE: Poor Outcomes

Space reserved for video overlay

Outcome

Campus power and heating limited to standby generators

- Don't meet basic needs of students (welfare or safety)
- Stakeholders asking why utilities department can't keep the lights/heat on

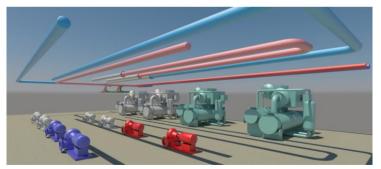
There's a better way...

Another Approach

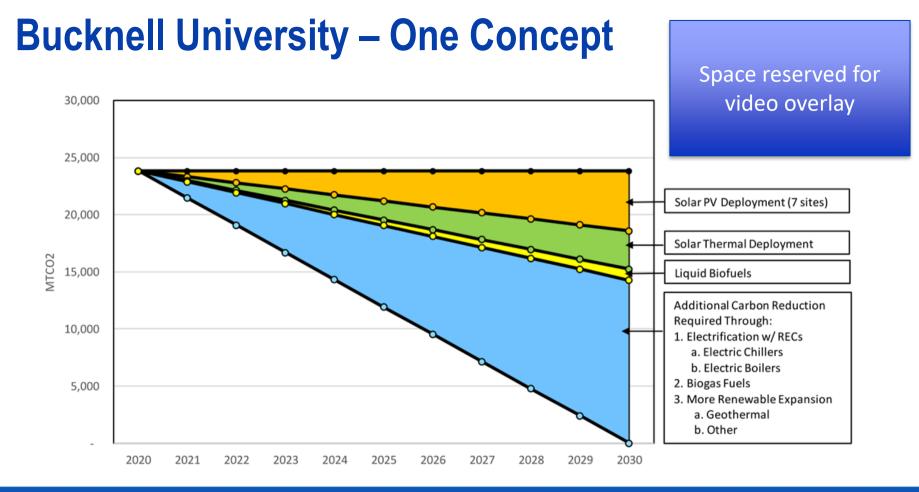
- ✓ Fossil fuels as "bridge"
- ✓ Fuel and equipment diversity
- ✓ Energy storage
- Efficiency improvements
- ✓ Renewables as part of "portfolio"
- ✓ Consider RECs, PPA, or virtual PPA

Peer Case Studies

Princeton University	Bucknell University
Key Stats	
 8,300 students, ~9.5MM SQFT 300 kpph steam capacity 15 MW CHP 20,000 ton Chiller Plant, TES 	 3700 students, ~3MM SQFT 210 kpph steam capacity 4.8 MW CHP, 1.2 MW STG 3100 Chiller Plant, TES
Sustainability Initiatives	
 2050 Carbon Neutrality Large Scale PV on Campus Reduction of Fossil/Use of Biofuels 	2030 Carbon NeutralitySustainability Work Groups


Princeton's Balance

- Steam to hot water heating conversion
- Heat pump chillers
- Installation of geoexchange well fields
- Hot and cold TES
- REC purchases
- Future biofuels
- Continued CHP (near-term)


Bucknell's Balance

- Energy efficiency projects
- Solar PV (and potential solar thermal)
- Partial electrification / electric chillers
- Chilled water TES
- Utility service provider collaboration, REC purchases
- Continued CHP (near-term)
- Future potential: Steam to hot water heating, geothermal, biofuels, microgrids

Things to ask when energy sustainability planning

Space reserved for video overlay

- Do sustainability plans <u>compromise my ability to meet my core mission</u>?
- Are energy-related sustainability plans <u>supporting resiliency</u>, <u>reliability</u>, <u>or flexibility</u> to serve given future operating challenges (weather events, terror, fuel shortages, etc)?</u>
- Have <u>efficiency</u> improvements been adequately pursued?
- Do sustainability plans allow <u>adequate transition times for "bridging"</u> and allow for flexibility to adapt to future technologies?
- Do sustainability plans allow for <u>fuel/energy diversity and energy storage</u>?
- Do sustainability decisions <u>burden future costs</u> in a way that may not be sustainable?
- Have the social benefits of REC's/PPA's been considered?

BURNS MEDONNELL.

Justin Grissom, P.E.

Project Manager jgrissom@burnsmcd.com

Nathan Ninemire, P.E

Project Manager nkninemire@burnsmcd.com

Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY