LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

Maximizing Energy Efficiency Through Condensing Economizers

Joseph Richter, Combustion & Energy Systems, LTD.

- Until a renewable energy source is available for reliable and continuous District Heating, a solution to emission reductions is Energy Efficiency through Waste Heat Recovery.
- Utilizing waste heat not only reduces fuel consumption improving overall efficiency, but reduces greenhouse gas and carbon emissions.

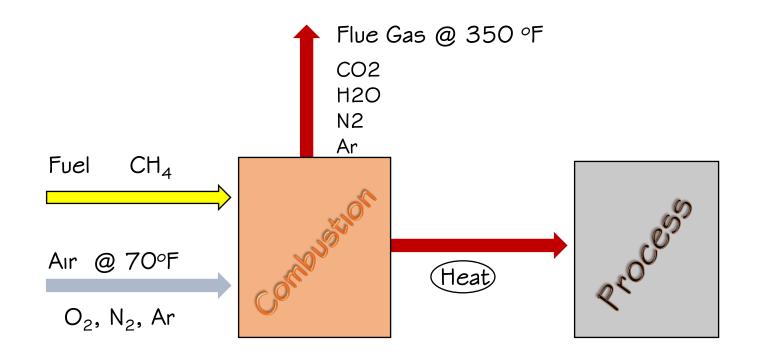
The added benefit – Lower operating costs for the same output.

Condensing Heat Recovery Systems

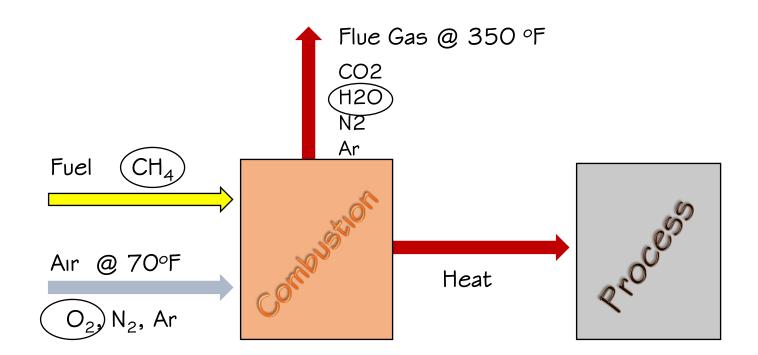
- Standard heat recovery systems like economizers, can reduce boiler stack temperatures to about 250F and are designed to avoid condensation of the flue gas.
- A condensing economizer improves heat recovery by capturing energy well below the dew point of the flue gas.

The Goal: Recover the maximum amount of usable heat possible from your exhaust gas <u>You paid for it, you might as well use it!</u>

Sources of Hot Gas


Combustion Sources Boilers Turbines Engines Thermal Oxidizers Etc.

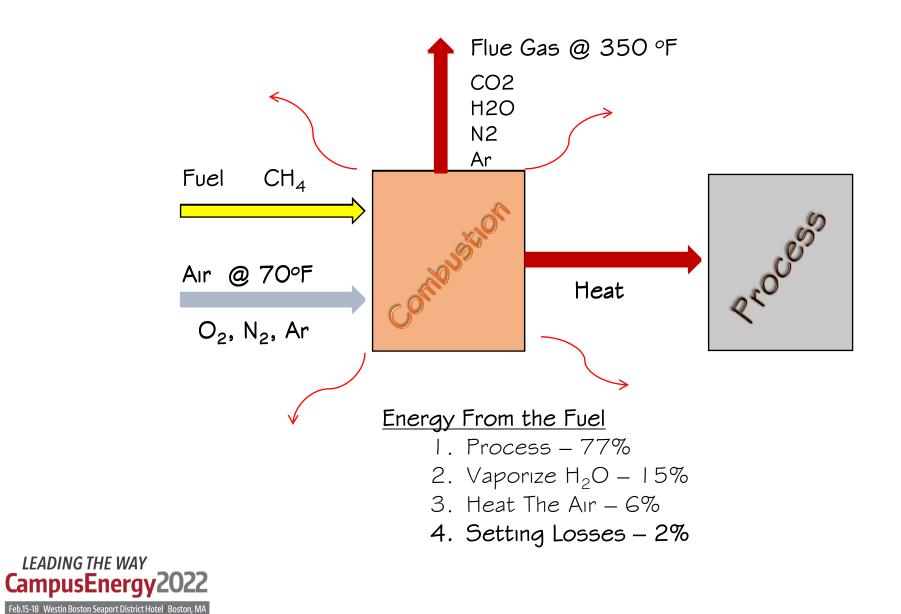
Hot Wet Air Dryers Ovens Etc.


BTU Content in the fuel ≢ Energy to the process or heating load

Energy From the Fuel I. Process – 77%

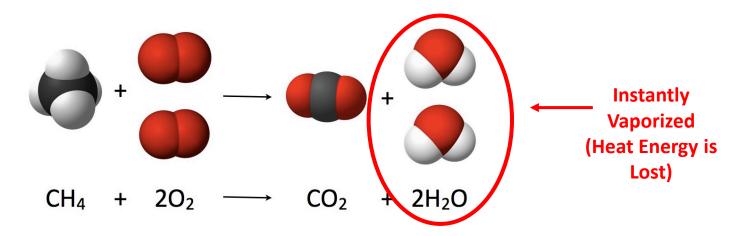


Energy From the Fuel I. Process – 77% 2. Vaporize H₂O – 15%



Energy From the Fuel

- I. Process 77%
- 2. Vaporize $H_2O 15\%$
- 3. Heat The Air 6%

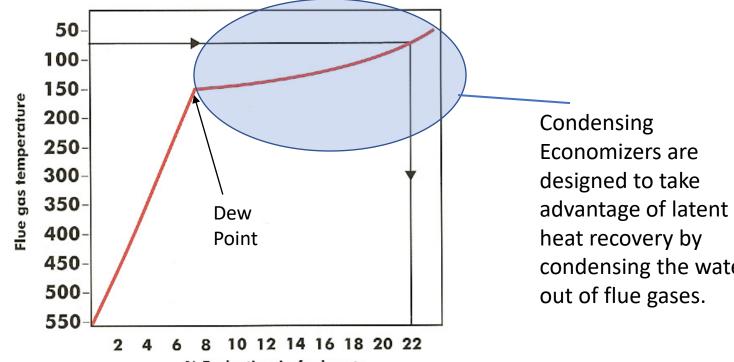


<u>Condensing Heat Recovery</u> <u>The Energy Bonus</u>

- Waste heat is categorized as sensible and *latent heat*
- Evaporating water absorbs ~15-20% of the total heat created by the fuel and it is lost to the atmosphere in the exhaust gas



Condensing Heat Recovery Reduces This Loss!


Sensible and Latent Heat

Sensible and Latent Heat

% Reduction in fuel costs

condensing the water

<u>Condensing Heat Recovery</u> <u>How it Works</u>

- By heating cold process liquids with hot boiler exhaust gases the ConDex system recovers both *sensible* and *latent* heat energy.
- As the hot exhaust passes over the ConDex finned tubes, the gases are cooled beyond the point where water vapor condenses out, releasing the energy it took to vaporize it initially.
- The phase change from vapor to liquid recovers approx.:

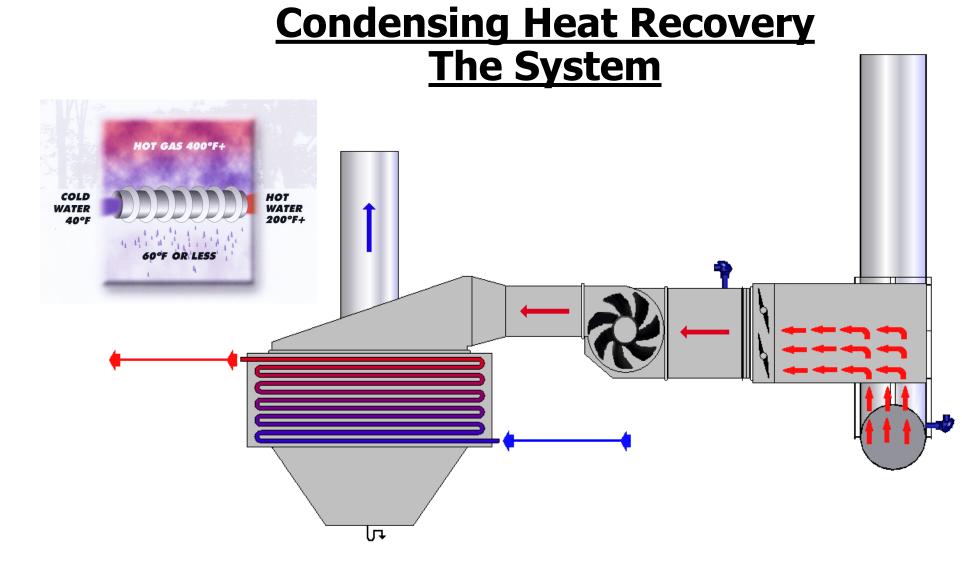
1,000 BTU of Energy for every Pound of Water Condensed

How Much Energy Is Lost in Exhaust Gases?

Assume 80 Degree Ambient Temp. Boiler Input – 100 MMBTU/Hr Gas Outlet Temperature After Standard Economizer = 350 °F 86,000 #/Hr Exhaust at 350 °F

Application: Package Boiler

Application: Package Boiler


How Much Energy Is Lost in Exhaust Gases?

Assume 80 Degree Ambient Temp. Boiler Input – 100 MMBTU/Hr Gas Outlet Temperature After Standard Economizer = 350 °F 86,000 #/Hr Exhaust at 350 °F

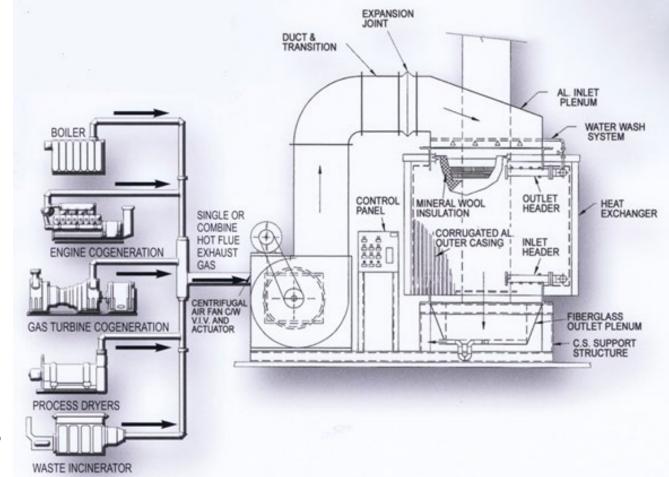
12.3 MMBTU/Hr Lost to the Atmosphere!

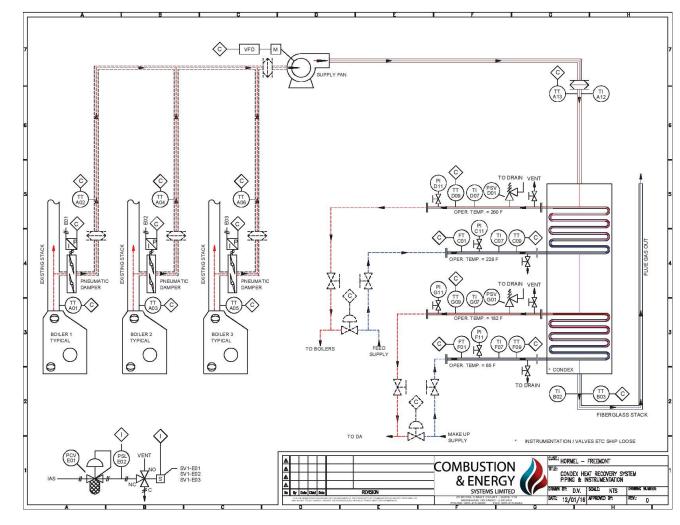
Because each installation is custom engineered, the required materials of construction are established based on the site specific requirements.

Standard material of construction is 304L stainless steel. Specialized metallurgy such as titanium, Incoloy or Hastelloy are used. Coatings such as Heresite are also used.

WATER RECOVERY FROM EXHAUST GAS

- Condensed water recovery rates vary from 4 – 60 Gallons
 Per Minute, depending on the application.
- Water is reusable in many applications such as boiler make up water, cooling tower water or process water.




Standard Condex Condensing Economizer

- Can take hot gas from multiple generators
- Does not interfere with existing exhaust flow
- Includes ID Fan, stack and controls
- Can heat multiple, independent liquid streams

Capture heat from multiple heat sources using a single ConDex Economizer.

Heat multiple independent Liquid streams such as process water and make up water.

Grand Rapids, MI Provides Steam to buildings in the downtown area for space heating and cooling, domestic hot water, chilled water, humidification and sterilization.

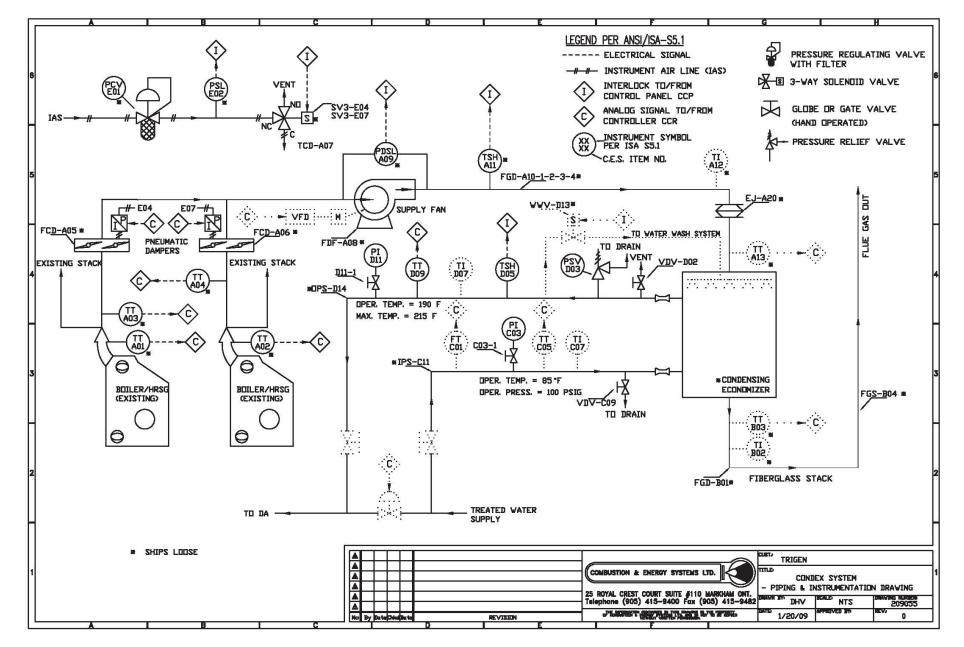
2 Natural Gas- Powered Boilers

Make-Up water going to the DA

Fuel Savings \$1.1 MM/Year

CO2 Reduction: 6,350 Tons/Year

NOx Reduction: 4.14 Tons/Year


Date:	January 27, 2009	Designed by: Dan Veitch
Customer:	Trigen	
Reference:	Grand Rapids	
Quotation No	.: 209055	MONTHLY AVERAGE DESIGN

Heat recovery system in the Condensing mode.

Fuel: Natural Gas Gas Flow: 114,000 Lb/Hr **Boiler Flue** Gas side: Gas type 114000 lb/hr Total flow rate 396 °F 🗲 Inlet temperature Gas Temp In: 396 F Outlet temperature 127 °F ← Gas Temp Out: 127 F Dew point 134 °F H₂O vapor by weight @ inlet 11.3 % H₂O vapor flow @ inlet 12882 lb/hr 10259 lb/hr H₂O vapor flow @ outlet_ H₂O condensed 2623 lb/hr Specific heat @ avg. temperature .026 Btu/lb.°F 2.35 inch w.c. Pressure drop .002 hr. ft². F/Btu Fouling factor Maximum velocity at inlet temperature through the new free area 26 fps Liquid side: Fluid type Boiler Make Up Water Flow: 99,567 Lb/Hr 99567 lb/hr + Total flow rate 85 °F ← Inlet temperature Water Temp In: 85 F Outlet temperature 190 °F 👞 Water Temp Out: 190 F Pressure drop 10 psi .001 hr. ft². F/Btu Fouling factor Velocity at average temperature_ 4 fps Sensible Heat Load: 7,955,175 Btu/hr **Energy Recovered:** 2,619,834 Btu/hr Latent Heat Load: 10.57 MMBTU/Hr 10,575,009 Btu/hr TOTAL HEAT RECOVERED (with 2% losses)

COMBUSTION & ENERGY SYSTEMS LTD.

Indiana State University

Terra Haute, IN Provides steam for heating, cooling and processes such as cooking or for research uses.

2 Natural Gas- Powered Boilers

Make-Up Water going to the DA

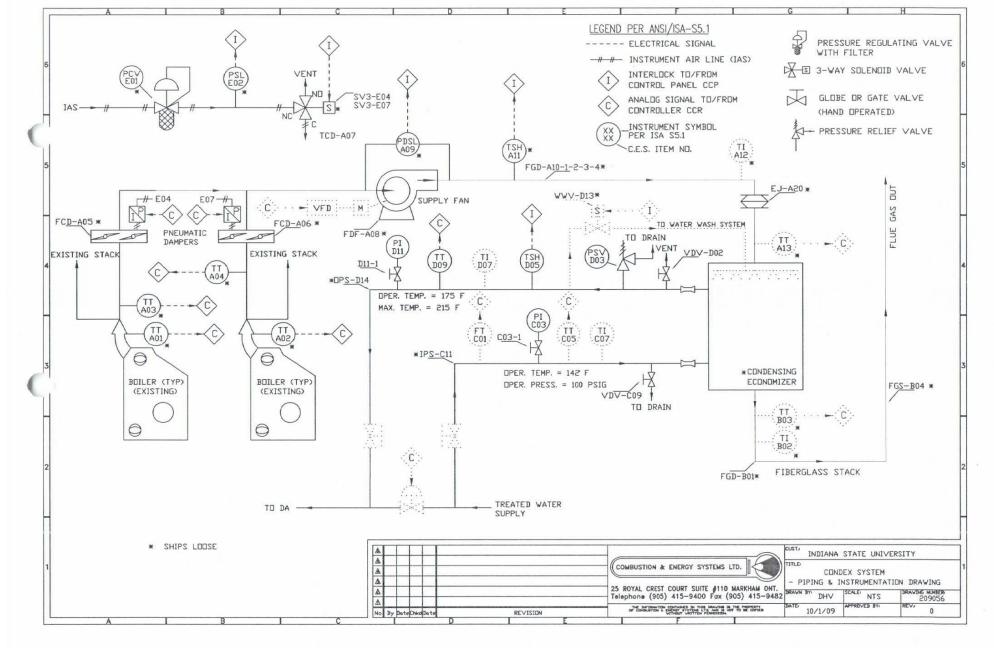
Fuel Savings \$339 K/Year

CO2 Reduced: 1,939 Tons/Year

NOx Reduced: 1.27 Tons/Year

Quotation No	Indiana State University Energy Recovery Project	igned by: Dan Veitch	
	Natural Gas		
Gas side:	Gas type	Boiler Flue	Gas Flow:
040 0140	Tatalflournete	02000 lb/br	
	Label and the second second second	200 °E	
	Outlet temperature Outlet temperature	158 °F	Gas Temp In:
	Dew point	134 °F	Gas Temp Out:
	H ₂ O vapor by weight @ inlet	11.3 %	
	H ₂ O vapor flow @ inlet	10396 lb/hr	
	H ₂ O vapor flow @ outlet	10396 lb/hr	
	H ₂ O condensed	0 lb/hr	
	Specific heat @ avg. temperature	0.27 Btu/lb·°F	
	Pressure drop	1.50 inch w.c.	
	Fouling factor	002 hr· ft ² · F/Btu	
	Maximum velocity at inlet tempera		
	through the new free area	30 fps	
Liquid side:_	Fluid type	Water	
	Total flow rate	95000 lb/hr	Water Flow:
	Inlet temperature	142 °F	
		175 °F	water lemp in:
	Pressure drop	20 psi	Water Temp Out:
	Fouling factor		P
	Velocity at average temperature_	7 fps	
Sensible He	at Load:	3,179,080 Btu/hr	
Latent Heat	Load:	0 Btu/hr	— Total Energy Recovered:
TOTAL HE	AT RECOVERED (with 2% losses)	3.179.080 Btu/hr	

ASSOCIATION


COMBUSTION & ENERGY SYSTEMS LTD.

LEADING THE WAY
CampusEnergy2022

Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Manhattan, KS Provides steam for campus heating and cooling

2 Natural Gas- Powered Boilers

Make-Up Water feeding to DA

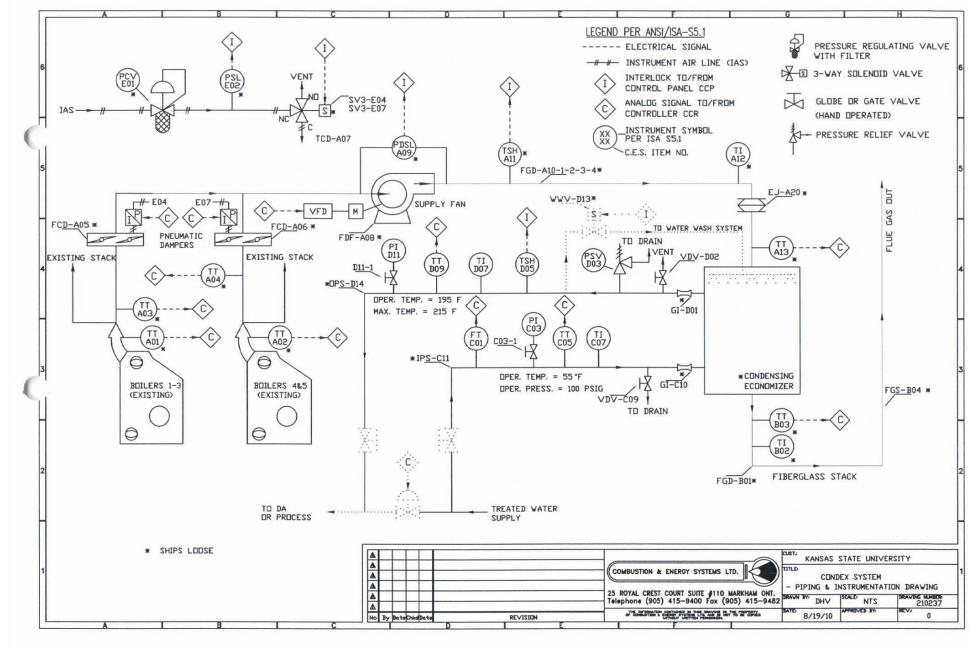
Fuel Savings: \$304 K/Year

CO2 Reduced: 2,683 Tons/Year

NOx Reduced: 1.75 Tons/Year

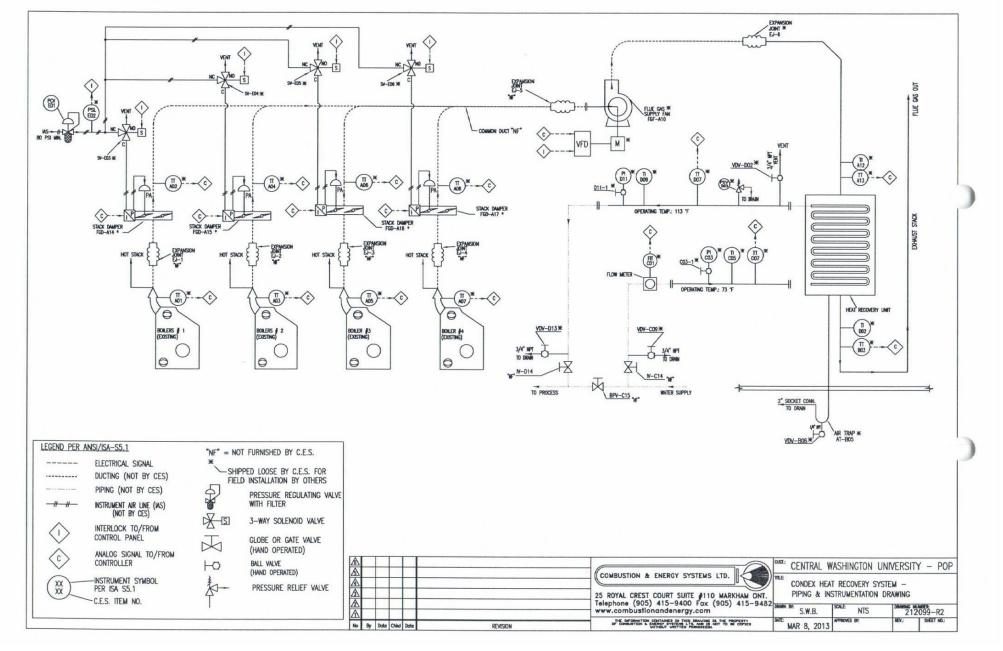
Date: Customer:	August 19, 2010 Kansas State University	Designed by:	Dan Veitch
Reference: Quotation No.:	Energy Recovery Project- De 210237	esign Conditions	

Heat recovery system in the Condensing mode.


Fuel:_____Natural Gas

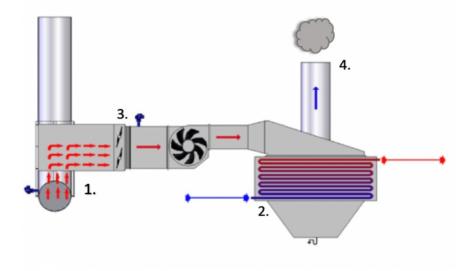
			— Gas Flow: 70,000 Lb/Hr
Gas side:	Gas type	Boiler Flue	
	Total flow rate	70000 lb/hr	
	Inlet temperature	310 °F	— Gas Temp In: 310 F
	Outlet temperature	129 °F	•
	Dew point	134 °F	— Gas Temp Out: 129 F
	H ₂ O vapor by weight @ inlet	11.3 %	
	H ₂ O vapor flow @ inlet	7910 lb/hr	
	H ₂ O vapor flow @ outlet	6741 lb/hr	
	H ₂ O condensed	1169 lb/hr	
	Specific heat @ avg. temperature_		
	Pressure drop	1.75 inch w.c.	
	Fouling factor	002 hr· ft ² · F/Btu	
	Maximum velocity at inlet temperatu	Ire	
	through the new free area	25 fps	
Liquid side:	Fluid type	Water	
	Total flow rate	31600 lb/hr	— Water Flow: 31,600 Lb/Hr
	Inlet temperature	55 °F	Water Temp In: 55 F
	Outlet temperature	195 °F	— Water Temp In: 55 F
	Pressure drop	8.00 psi	— Water Temp Out: 195 F
	Fouling factor	.001 hr· ft ² · F/Btu	Water Temp Out. 1991
	Velocity at average temperature	3 fps	
Sensible Heat Load:		3,302,170 Btu/hr	
Latent Heat Load:		1,166,442 Btu/hr	— Total Energy Recovered:
TOTAL HEAT REC	OVERED (with 2% losses)	4,468,612 Btu/hr	4.47 MMBTU/Hr

COMBUSTION & ENERGY SYSTEMS LTD.



Refe	omer: Central Wash	besigned by nington University gime 3, OAT 0	: Sean Burrowes	
	Heat recovery system	n in the Condensing mode.		
	Gas side:	Gas type Total flow rate	Boiler flue 51,382 lb/hr ◀	— Gas Flow: 51,382 Lb/Hr
		Inlet temperature Outlet temperature Dew point H ₂ O vapor by weight @ inlet H ₂ O vapor flow @ outlet H ₂ O condensed Specific heat @ avg. temperature Pressure drop Fouling factor Maximum velocity at inlet temperature through the new free area	269.2 °F 93 °F 132°F 1.13% 5,718 lb/hr 695 lb/hr 4,023 lb/hr 0.267 Btu/lb·°F 1.96 inch w.c. 0.002 hr· ft ² · F/Btu ure	— Gas Temp In: 269 F — Gas Temp Out: 93 F
	Liquid side:	_Fluid type Total flow rate Inlet temperature Outlet temperature Density Specific heat @ avg. temperature Pressure drop Fouling factor Velocity at average temperature	170,000 lb/hr 73 °F 113 °F 64.08 lb/ft ³ 0.924 Btu/lb·°F 8.05 psi 0.001 hr⋅ft ² ·F/Btu	 Glycol Flow: 170,000 Lb/Hr Glycol Temp In: 73 F Glycol Temp Out: 113 F
	Sensible Heat Load:_		2,231,261 Btu/hr	
	Latent Heat Load:		4,051,939 Btu/hr	 Total Energy Recovered: 6.28 MMBTU/Hr
	TOTAL HEAT RECO	VERED (with 2% losses)	6.283.200 Btu/hr	0.20 10101 0711

COMBUSTION & ENERGY SYSTEMS LIMITED 25 Royal Crest Court, Markham, Ontario L3R 9X4 (P) 905.415.9400 (F) 905.415.9482 www.CondexEnergy.com


How does the CONDEX system work?

1. Flue gases are drawn off of the boiler stacks by fans, which push them through the CONDEX heat exchanger

2. The gases are then cooled by glycol to the point where water vapor can condense, releasing the heat it took to vaporize initially

3. As the boilers load changes, the supply control dampers open and close to capture all available flue gases

4. The remaining 90° F gases leave the heat exchanger and are discharged to the atmosphere by a separate stack.

A model of the CONDEX heat exchanger

This new innovation allows CWU to:

Prevent burning additional natural gas
Reduce greenhouse gas emissions
Save money
Recover usable water from flue gas condensation
Enhance sustainability on campus

Davis, CA Provides steam, electricity and chilled water to the campus.

2 Natural Gas Fired Boilers using Ultra Low NOx burners

3 heating coils

- Condensate Return
- Dormitory Heating Loop
- Make Up Water

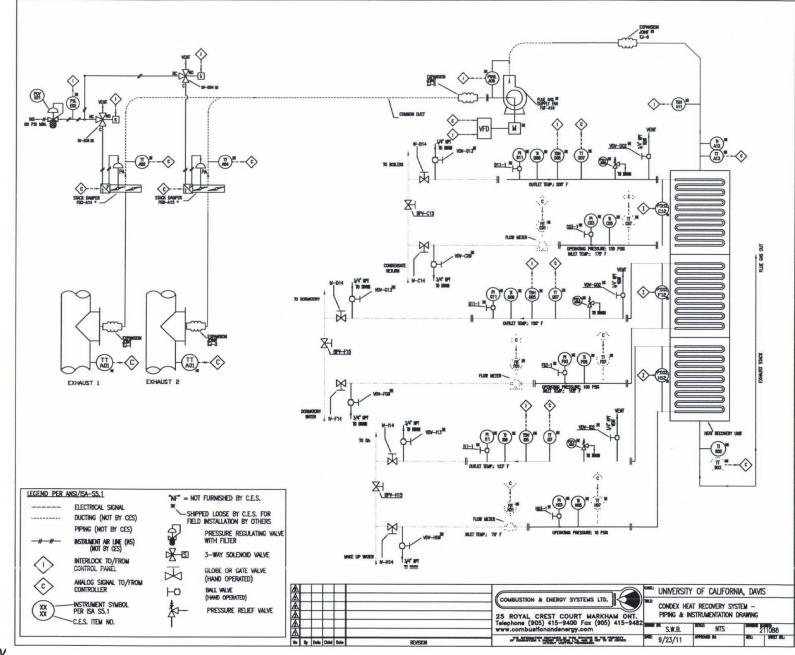
Fuel Savings \$1.4 MM/Year

CO2 Reduced: 9,194 Tons/Year

NOx Reduced: 0.68 Tons/Year

	Customer: U	niversity of California, Davis ondex Condensing Economizer Systen		
		stem in the dry cooling mode. atural Gas		
	Gas side:	Gas type Total flow rate Inlet temperature Outlet temperature Dew point H ₂ O vapor by weight @ inlet H ₂ O vapor flow @ inlet H ₂ O vapor flow @ outlet H ₂ O condensed Specific heat @ avg. temperature Pressure drop Fouling factor Maximum velocity at inlet temper through the new free area	0.29 inch w.c. 0.001 hr· ft ² · F/Btu ature	Gas Flow: 215,000 Lb/Hr Gas Temp In: 301 F Gas Temp Out: 215 F
	Liquid side:	Fluid type Total flow rate Inlet temperature Outlet temperature Pressure drop Fouling factor Velocity at average temperature_	Water 159,000 lb/hr ◀ 175 °F 205 °F 14.92 psi 14.92 psi 0.001 hr ft ² F/Btu 7.44 fps	Water Flow: 159,000 Lb/Hr Water Temp In: 175 F Water Temp Out: 205 F
	TOTAL HEAT RE	ECOVERED (with 2% losses)	4,856,445 Btu/hr ◄	Total Energy Recovered:4.85 MMBTU/Hr
LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA	1	COMBUSTION & ENERGY SY 25 Royal Crest Court, Markham, (P) 905.415.9400 (F) 905.	Ontario L3R 9X4	INTERNATION DISTRICT ENE ASSOCIATION

	stem in the <i>dry cooling</i> mode.		
Fuel: Na	en e		
Gas side:	Gas type	Boiler Flue	Gas Flow: 215,000 Lb/hr
	Total flow rate		
	Inlet temperature		Gas Temp In: 215 F
	Outlet temperature		
	Dew point	135 °F	Gas Temp Out: 128 F
	H ₂ O vapor by weight @ inlet		
	H ₂ O vapor flow @ inlet		
	H ₂ O vapor flow @ outlet	19,688 lb/hr	
	H ₂ O condensed	4,714 lb/hr	
	Specific heat @ avg. temperate		
	Pressure drop Fouling factor		
	Maximum velocity at inlet temp		
	through the new free area		
Liquid side:	Fluid type	Water	
	Total flow rate	211,000 lb/hr	——— Water Flow: 211,000 Lb/Hr
	Inlet temperature	105 °F -	Water Temp In: 105 F
	Outlet temperature	150 °F	Water Temp Out: 150 F
	Pressure drop	0.001 hr ₂ ft ² . F/Btu	Water Temp Out. 1501
	Fouling factor Velocity at average temperatur		
Sensible Heat Loa	ad:	4,885,274 Btu/hr	
Latent Heat Load		4,708,167 Btu/hr	Total Energy Recovered:
	COVERED (with 2% losses)		9.59 MMBTU/Hr


	Customer: Univer	rsity of California, Davis ex Condensing Economizer System P		
		n in the <i>dry cooling</i> mode.		
	Fuel:Natura Gas side:	_Gas type	Boiler Flue	Gas Flow: 210,286 Lb/Hr
Total Energy Recovered 15.82 MMBTU/Hr		Total flow rate Inlet temperature Outlet temperature Dew point H ₂ O vapor by weight @ inlet H ₂ O vapor flow @ inlet H ₂ O vapor flow @ outlet H ₂ O condensed Specific heat @ avg. temperature Pressure drop Fouling factor Maximum velocity at inlet temperature through the new free area	126 °F 128 °F 9.3 % 19,688 lb/hr 18,447 lb/hr 1,241 lb/hr 0.261 Btu/lb·°F 0.12 inch w.c. 0.001 hr· ft ² · F/Btu	Gas Temp In: 128 F Gas Temp Out: 126 F
	Liquid side:	_Fluid type Total flow rate Inlet temperature Outlet temperature Pressure drop Fouling factor Velocity at average temperature	Water 26,000 lb/hr 70 °F 123 °F 123 °F 6.91 psi 0.001 hr⋅ ft ² ⋅ F/Btu 3.53 fps	Water Flow: 26,000 Lb/Hr Water Temp In: 70 F Water Temp Out: 123 F
	Sensible Heat Load:		145,765 Btu/hr	Total Energy Recovered:
	Latent Heat Load:	OVERED (with 2% losses)	1,241,907 Btu/hr 1,387,672 Btu/hr	1.38 MMBTU/Hr

COMBUSTION & ENERGY SYSTEMS LTD. 25 Royal Crest Court, Markham, Ontario L3R 9X4 (P) 905.415.9400 (F) 905.415.9482

LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Joseph Richter

