

INTEGRATED APPROACH TO BUILDING A MICROGRID

Suresh Jambunathan, Principal & Managing Director at Energy and Water Development, LLC

June 24-27, 2019 Pittsburgh, PA

AGENDA: concept to commissioning

- Introduction
- Microgrids what, how and why?
- Sustainability (reducing CO2 emissions) must be Profitable (increase ca\$hflow)
- "First Principles" of Microgrid development
 - Rapid concept creation
 - Economics: CapEx, OpEx + Risks & Mitigants
 - Contract structures & counterparties
 - Public Procurement
 - Private Procurement
 - Project Delivery & Commissioning
 - Operation & Maintenance (O&M)

Who is Energy & Water Development LLC?

Customized Energy and Water Development services; also known as EnWaDev.

A. Consulting:

Energy & Water optimization strategy ("Demand Reduction", then "Supply Optimization") Investment grade financial analysis encompassing concept development, project structuring, contracting strategy, technology assessments, bid management, environmental impact, project schedule and constructability etc...

B. Development:

Design-Build and Own projects. Deliver as full-wrap Engineering Procurement & Construction (EPC) or part-wrap Engineering, Procurement & Construction Management (EPCM).

C. Operations & Maintenance:

Reliable energy & water to the customer and maintain asset value for the owner

Assertions:

- 1. Efficiency *hedges* energy & water price volatility.
- 2. Profitably reduce Greenhouse Gas Emissions.
- 3. No conflict between your wallet and your conscience.

Regular Grid Vs. Microgrids

Microgrid: A set of interconnected loads and Distributed Energy Resources (DER) within defined electrical boundaries; this entity can connect or disconnect from the larger electrical grid to operate in grid-connected or in island mode.

Microgrids: "old is new"

1882 Microgrid: 150 KW coal-to-steam CHP system in Pearl Street, Manhattan, NY

2019 Microgrids: KW to 100+ MW systems configured around wind/sun/fuel cell + battery storage + CHP technologies (steam turbine, gas turbine, reciprocating engine) 5

Microgrids: Components & Systems

Clean natural gas fueled generators in Combined Heat & Power (CHP) configurations can be a <u>foundational</u> component of a microgrid. Thermal energy = useful byproduct.

Why CHP in a microgrid? Two-for-one

"Topping cycle" Combined
Heat & Power (CHP) at
University of Massachusetts,
Amherst, MA.
Efficiency >80%

Traditional central power generation.

Efficiency ~35%.... burning money up the stack

Questions (more on this next few slides)

A. Do I need or want a microgrid?

B. How do I build it?

C. How do I Operate & Maintain it?

Project Development = Common Sense + Diligence

- 1. Set objectives & gather data
- 2. Conceptualize alternate configurations: technical & economic appraisal

3. Project development

Technical: Configuration, engineering, procurement, construction

Legal: Structure of contracting entities (LLC, S or C Corp etc...)

Commercial: Contracts for fuel, power, O&M, grants & incentives

Environmental: Permits

Financial: Financial models, equity & debt

Risks & Mitigants: Project Execution Plan (PEP)

4. Operations & Maintenance (O&M)

A: Do I need or want a microgrid

Decision makers, considerations & benefits

CEO Increase share holder value; augment business model

CFO Increase site cashflow; several ways to finance the project

COO & Ops Staff Maximize site uptime, increase resiliency

Strengthen the grid, critical backup **Grid Managers**

Regulators Protect the public by strengthen the grid / critical backup

Community Sustainable - "be good and be green"

- Consider the long-term viability of your site
- Compare your alternatives
- Quantify value streams

Renewable Integration

Incorporates renewables and

Peak Shaving

Reduce the highest level of energy consumption

Voltage/Var Support*

Maintain consistent voltage by varying reactive power

Islanding Operate independently from the grid

Retail Energy Time-Shifting

Sell energy at the retail rate versus the wholesale price

Spinning Reserve

Provide energy to cover in case of primary generation loss

Power Quality

Protect loads from momentary events such as power interruptions and voltage sags and swells

Energy Time Shifting**

Frequency Regulation

Balance grid frequency by

supplying either

load or generation

Save when cost of energy is low and use when costs are high

Local Capacity

Distribution Deferral

Provide energy, typically in constrained areas of the grid

Power Reliability

Optimal Power Flow

Support loads when the grid loses power generation to the load

Frequency Response

Postpone investments in a sudden change of power distribution assets

Balance frequency quickly after consumption or generation

Economic Optimization Perform optimal dispatch of

generation sources in both grid-connected and islanded modes

B: How do I build a microgrid? Thoughts & Action IDEA 2019 The Energy for More Resilient Cities

Thoughts

- 1. Safety & Security
- 2. Resiliency
- 3. Controllability
- 4. Investment & payback/NPV/IRR
- 5. Code Compliance
- 6. Sizing & Configuration
- 7. Off-Design Performance
- 8. Service Boundary
- 9. Schedule

Actions (more in later slides)

- 1. Screening
- 2. Feasibility study
- 3. Investment grade study
- 4. Engineering: Basic & Detailed
- 5. Procurement & Construction
- 6. Commissioning
- 7. Operations & Maintenance

Start by graphing load profiles, then sketch ideas

Pencil details – create configurations

Baseline "before" case; consider "after" case

Mass & Energy Balance sizes & costs the project

			1000							
NOMINAL BALANCES: S	TEAM, FUEL,	POWER	and CO2	emissions						
STEAM BALANCE										
BEFORE PROJECT	Kpph, each unit	Kpph, total	Klb/yr total	Comment	AFTER PROJECT	Kpph, each unit	Kpph, total	Klb/yr total	Comment	Г
Boilers 1-to-6	117	700	6,048,000	Loaded 58.3%	Boilers 1 & 4 (2-optg blrs)	145	289	2,554,500	Loaded 72.3%	
CHP (2x1 CC Config.)	0	0	0		CHP (2x1 CC Config.)	206	411	3,493,500		
TOTAL		700	6,048,000		TOTAL		700	6,048,000		
GAS BALANCE, LHV MMBtu										
BEFORE PROJECT	MMBtu/hr, each unit		MMBtu/yr total	Comment	AFTER PROJECT	MMBtu/hr, M each unit	MMBtu/hr total	MMBtu/yr total	Comment	
Boilers 1-to-6	152	910	7,862,400	Blrs = 1.3 MMBtu/Klb	Boilers 1 & 4 (2-optg blrs)	184	367	3,244,215	Blrs = 1.27 MMBtu/Klb	
CHP (2x1 CC Config.)	0	0	0		CHP (2x1 CC Config.)	278	555	4,720,587		Ι.
TOTAL	152	910	7,862,400		TOTAL	461	922	7,964,802	1% change in gas reqd.	
POWER BALANCE										۲-
BEFORE PROJECT		MW _e	MWh/yr	Comment	AFTER PROJECT		MWe	MWh/yr	Comment	
Host: Pwr from grid		22.5	194,400		Host: Pwr from grid		0.2	4,482	import a few electrons!	
Host: Net Pwr from CHP		0.0	0		Host: Net Pwr from CHP		22.34	189,918	Fuel-free clean power	
TOTAL		22.5	194,400		TOTAL		22.5	194,400		
CO2 EMISSIONS BALANCE, metric	tonnes (mt)							GH	G reduction 71,236 m	
BEFORE PROJECT	lb/gallon ethanol	mt/hr	mt/yr	Comment: CO2 from	AFTER PROJECT	lb/gallon ethanol	mt/hr	mt/yr	Comment: CO2 from	
Gas to Blrs	1.2	19.0	164,383	Gas	Gas to Blrs	0.5	7.9	67,828	Gas	
Gas to CHP	0.0	0.0	0	Gas	Gas to CHP	0.7	11.6	98,695	Gas	
Grid purchased power	0.6	8.7	75,109	22.5 MW grid pwr	Grid purchased power	0.0	0.2	1,732	0.16 MW grid pwr	
TOTAL	1.8	27.7	239,492		TOTAL	1.2	19.7	168,255	30% GHG emissions rec	

ENERGY AND WATER DEVELOPMENT, LLC

Good schedule = "Project Execution Plan (PEP)" Critical path = improves financial projections

Financial metrics: Payback or IRR..... Other?

Model financials to identify & mitigate risks

RISK	BORNE BY	MITIGANT
CHP system CapEx	Project, LLC	Clearly define scope + maximally utilize existing assets
CHP system OpEx	Project, LLC	Maximally utilize existing assets & people
CHP system performance - MW & Kpph	Project, LLC	Define site energy demand profile, perform component & system failure analysis
CHP system availability (Optg hrs)	Project, LLC	Good housekeeping, pro-active maintenance program
CHP stand-by charge	Host, Project LLC	Work with utility; demonstrate grid support benefits of CHP
Gas Price change	Host	Design for minimal incremental gas exposure
Power price change	Host	Work with utility to aid their load growth plan ("IRP")
Site / mill risk	Host	Demonstrate site competitveness vis-à-vis regional competitors, Put
Site availability (Optg hrs)	Host	Demonstrate site competitveness vis-à-vis regional competitors, Put

INPUT	UNIT	VALUE	COMMENT
FINANCING STRUCTURE (BY DEVELOPER)			
Debt: Equity ratio	%	85%	Assumed Exim Bank
Debt: Interest Rate	%	5.5%	LIBOR + 2.0%
Debt term	years	10	Assumed
KEY ECONOMIC PARAMETERS			
WHP Installed CapEx	\$MM	\$8.0	Assumed
Value of ORC power	c/KWh	12.0	12-50 c/kwhr
ORC Heat to Power Efficiency	%	17.0%	typical
Ship Availability	Optg hrs/yr	6,840	assumed
Salvage value of asset	% of New	10%	assumed
Operations & Maintenance			
Fixed Maintenance / LTSA	% of CapEx	2.0%	assumed
Labor: # of FTEs		4	assumed
Labor: fully loaded unit cost	\$/hr	\$25	assumed
Labor: % utilization	%	5.0%	assumed
Technical: Main Engine Size	MW	50	
Engine Exhaust Gas (EEG) - Mass flow	lb/hr	812,981	367200 Kg/hr
Engine Exhaust Gas (EEG) -inlet to ORC	F	536	280 C
Engine Exhaust Gas (EEG) -exiting ORC	F	275	135 C
Engine Exhaust Gas (EEG) - sp. Ht, Cp	Btu/lbF	0.29	

ОUТРUТ	UNIT	VALUE	COMMENT
10-yr Pjt ROI	%	24.8%	4.1 years payback
10-yr Pjt ROE	%	107.2%	1 years Equity payba
Equity (by developer)	\$MM	\$1.2	
Debt amount financed	\$MM	\$6.8	
Total Financing	\$MM	\$8.0	
ORC Net Power	MW_e	3.07	estimated
WHP Installed CapEx	MM/MW_e	\$2.61	calculated
Final Maintanana (1750	ćv	¢160	
Fixed Maintenance / LTSA	\$K	\$160	
Labor	\$K	\$10	
O&M, Yr 1	\$K	\$170 0.8	
O&M, Yr 1	c/KWh	0.8	
Available Waste Heat in EEG	MMBtu/Hr	118.8	Baseline 32F/ 0C
WH recovered in ORC unit	MMBtu/Hr	61.5	
Unrecovered WH	MMBtu/Hr	57.3	

ECONOMICS: For CapEx, avoid +/- estimates. Use Likely case Vs. Worst case approach

	FIGURES IN BLUE ARE INPUTS	St	age:			
	CapEx: Configuration		Current Estimate	% Uncertainty	Uncertainty Adjusted Estimate	Comment
			\$MM	%	\$MM	
_			\$25.4	29%	\$32.7	
Α	Major Process Equipment ("Direct Costs")					
	Solar PV panels		\$1.5	10%	\$1.7	Vendor quote
	Battery Energy System		\$4.5	5%	\$4.7	Vendor quote
	CHP: Engine + Generator		\$4.0	5%	\$4.2	Vendor quote
	CHP: HRSG		\$1.0	5%	\$1.1	Vendor quote
	Other (switchgear, DA/pumps etc)		\$0.8	15%	\$0.9	Factored Estimate
	Major Proc. Eqpmt		\$11.8	6%	\$12.5	
В	Balance of Plant, BOP ("Direct Costs")					
	Civil		\$1.0	75%	\$1.8	Est. (Qty x unit cos
	Mechanical		\$1.5	50%	\$2.3	Est. (Qty x unit cos
	Electrical		\$2.0	40%	\$2.8	Est. (Qty x unit cos
	Instrumentation & Controls		\$0.5	100%	\$1.0	Est. (Qty x unit cos
	Other		\$1.0	50%	\$1.5	SWAG!
	Balance of Plant		\$6.0	55%	\$9.3	
С	Soft Costs ("Indirect Costs")					
	Detail Engineering		\$1.0	15%	\$1.2	Fixed fee quote
	Project Management		\$0.5	15%	\$0.6	Fixed fee quote
	Construction Management		\$0.5	15%	\$0.6	Fixed fee quote
	Legal fees		\$0.5	100%	\$1.0	SWAG
	Financing charges		\$0.5	40%	\$0.7	Financier e-mail
	Environmental / permitting		\$0.3	300%	\$1.2	SWAG
	Bonding & Insurance		\$0.5	50%	\$0.8	Est. by finance
	Other		\$0.5	35%	\$0.7	
_	Soft Costs		\$4.3	54%	\$6.6	
D	Contingency	15%	\$3.3		\$4.3	missing scope on
3+C+D	INVESTMENT REQUIRED		\$25.4	29%	\$32.7	
			Likely case		Worst case	

Graph projected cashflows to select microgrid configuration and risk-adjusted financing structure

ОИТРИТ	UNIT	VALUE	VALUE	VALUE
<u> </u>				
		No CHP	GT-CHP	RICE-CHP
Thermodynamic Metrics				
Efficiency	% LHV	-	80%	77%
Electrical Heat Rate LHV MM	Btu/MWh	-	5.5	5.2
Thermal Energy Rate LHV MMBtu,	/MMBtu _{th}	-	2.1	2.9
Project Financing Structure				
25% Equity	\$MM	-	\$3.0	\$2.1
75% Debt	\$MM	-	\$9.0	\$6.4
100% Total Investment	\$MM	-	\$12.0	\$8.5
Year 1 Costs				
Grid pwr + Fuel+OpEx	\$MM	\$6.7	\$4.0	\$4.8
Grid Pwr + Fuel+OpEx+Debt Service	\$MM	\$6.7	\$5.2	\$6.5
CHP advantage Vs. No-CHP	\$MM	-	\$1.5	\$0.2
<u>Lifetime Costs</u>				
Grid pwr + Fuel+OpEx	\$MM	\$148	\$94	\$111
Grid Pwr + Fuel+OpEx+Debt Service	\$MM	\$148	\$102	\$123
CHP advantage Vs. No-CHP	\$MM	-	\$46	\$25

Sensitivity analysis quantifies risk and guides mitigation strategy

3.07 MW	10-yr	Pjt ROI	Value of ORC power, c/KWh				
_		20.8%	5.0	10.0	15.0	20.0	25.0
		\$6.0	6.7%	28.5%	47.3%	65.3%	83.0%
WHP Instal	lled CapEx	\$6.5	4.8%	25.5%	43.2%	59.9%	76.3%
	\$MM	\$7.0	3.2%	22.9%	39.6%	55.3%	70.6%
		\$7.5	1.7%	20.6%	36.4%	51.2%	65.6%
		\$8.0	0.3%	18.6%	33.7%	47.6%	61.2%
		\$8.5	-0.9%	16.8%	31.2%	44.5%	57.3%

3.07 MW 10-yr Pjt ROI	Value of	ORC powe			
20.8%	5.0	10.0	15.0	20.0	25.0
2,840	-17.2%	-5.7%	2.8%	9.9%	16.2%
Ship Availability 3,840	-12.6%	0.5%	10.2%	18.7%	26.4%
Optg hrs/yr 4,840	-8.6%	5.8%	16.9%	26.7%	35.8%
5,840	-5.1%	10.6%	23.1%	34.3%	44.9%
6,840	-2.0%	15.1%	28.9%	41.6%	53.8%
7,840	0.9%	19.3%	34.6%	48.8%	62.5%

3.07 MW	10-yı	Pjt ROI	Value of	ORC powe	r, c/KWh		
		20.8%	5.0	10.0	15.0	20.0	25.0
		14.0%	-5.8%	9.6%	21.8%	32.7%	43.1%
Ht-to-Pwr	Efficiency	15.0%	-4.5%	11.5%	24.2%	35.7%	46.7%
	%	16.0%	-3.2%	13.3%	26.6%	38.7%	50.2%
		17.0%	-2.0%	15.1%	28.9%	41.6%	53.8%
		18.0%	-0.8%	16.8%	31.2%	44.5%	57.3%
		19.0%	0.4%	18.5%	33.5%	47.4%	60.8%

Tradeoffs: Cost Vs. Accuracy Vs. Time

ESTIMATE CLASS	ESTIMATE TYPE	PURPOSE	ACCURACY	PROJECT COMPLETION	COST & TIME
5	Order of Magnitude	Initial Feasibility or	-50% to 100%	0%-to-1%	Free-to-\$10,000
	(OOM)	screening	00 % to 100 %	070 to 170	2-hours-to-3 days
4	Preliminary	Concept study or	-15% to 50%	1%-to-15%	\$5,000-to-\$50,000
7	1 Tommary	feasibility	1070 10 0070	170 to 1070	2-days-to-5 weeks
3	Definitive	Budget, authorization	-10% to 30%	10%-to-40%	3%-to-5% of final CapEx
		or control			4-weeks-to-4 months
2	Detailed	Control or bid/tender	-5% to 20%	30%-to-70%	4%-to-10% of final CapEx
	-		 - · ·		2-to-6 months
1	Check	Bid/tender	-3% to 15%	50%-to-100%	5%-to-20% of final CapEx
	(Construction)				3-to-12 months

Risk Mitigation = Project Success

A Special Purpose Vehicle (SPV) can deliver the project; provides a legal ring-fence

Pricing structure must be simple, transparent and equitable

Pjt. Delivery: EPC or EPCM?

CONTRACTING / PRICING STRATEGY

Clean water price = fixed + variable + margin

Fixed = f(CapEx, fixed O&M)

Variable = f(gas, grid power, variable O&M)

Margin = f(fixed fee)

C: How do I Operate & Maintain my microgrid? IDEA2019 The Energy for More Resilient Cities

Inference?

Economic 1st principle: Focus on core competence. Outsource non-core needs

Kautilya (aka. Chanakya, Indian royal advisor from 2,300 year ago):

In his "Arthashastra", he advised the kingdom's requirements be "outsourced" to citizens so "each may excel at his task".

The kingdom's prosperity depended only on external defense, internal security plus speedy & impartial justice.

Adam Smith (18th century Scottish philosopher):

"It is not from the benevolence of the butcher, the brewer or the baker that we expect our dinner, but from their regard to their own interest"

Common Contract O&M commercial structures

Service Contract type	Typical Features	Costs & Benefit
Full Coverage	100% coverage of operations, maintenance, parts & material, emergency service etc	High Budget certainty. Provider incentivized to minimize Repair & replacement costs
Full Labor	Labor + minimal maintenance. Parts & material, emergency service etc on a T&M basis	Budget certainty and lower costs if asset owner able to manage some activities
Preventive Maintenance	Fixed fee covers scheduled maintenance hours + basic consumables	Lower upfront cost, lower budget certainty & medium Owner involvement
Inspection	Fixed fee covers "fly-by" visits and + a maintenance advisory	Very low upfront cost, low budget certainty & high Owner involvement

Project Development = Common sense + diligence. IDEA Recap principles

- 1. Set objectives & gather data
- 2. Conceptualize alternate configurations: technical & economic appraisal

3. Project development

Technical: Configuration, engineering, procurement, construction

Legal: Structure of contracting entities (LLC, S or C Corp etc...)

Commercial: Contracts for fuel, power, O&M, grants & incentives

Environmental: Permits

Financial: Financial models, equity & debt

Risks & Mitigants: Project Execution Plan (PEP)

4. Operations & Maintenance (O&M)

Suresh Jambunathan, Principal & Managing Director Energy and Water Development, LLC

630-335-4544 enwadev@gmail.com

www.enwadev.com

June 24-27, 2019 Pittsburgh, PA