

<u>Clean District Thermal Energy</u> <u>System Master Planning</u>

Brendan Hall, PE, BEMP Senior Engineer CHA Consulting

Electrification / Decarbonization Goals

- Electrification
 - Convert any energy uses currently provided by fossil fuels to electric based options.
- Decarbonization
 - Converting energy uses that create ongoing carbon emissions to energy sources that have no or little carbon emissions.

Evolution of District Heating

Gen	Name	Temperature	Features
1G	First generation district heating (1GDH)	<390 °F	 Steam as heat carrier Coal-fired systems Concrete pipes
2G	Second generation district heating (2GDH)	>212°F	 Pressurized hot-water Fossil-based centralized plants
3G	Third generation district heating (3GDH)	~210°F	 Pressurized hot-water Industrialized substations Heat storage integration High- efficient CHP plants
4G	 Fourth generation district heating (4GDH) Low-temperature district heating (LTDH) Low-enthalpy systems 	120–180°F	 Low-temperature water Renewables integration Heat waste recovery
5G	 Fifth generation district heating (5GDH) • District heating and cooling (DHC) • Decentralized heat pump smart grid • Water loop heat pumps systems • Cold District Heating (CDH) • Bidirectional low temperature networks 	<85°F	 Heating and cooling supply Reversible heat pumps substations Decentralized production Heat sharing metering

HVAC Temperature Scale

IDEA2021 Powering the Future: District Energy/CHP/Microgrids Sept. 27-29 | Austin Convention Center | Austin, Texas

Clean District Energy System Example

System Comparison

Creating 1000 MBH of Building Heat										
	Dis	trict ASHP	D	istrict Geo	Onsite Geo		WSHP (Boiler/Tower)		NG Fired HW	
Site Energy (kBtu)		460		389		371		1433	1509	
Source Energy (kBtu)		1444		1222	1165 1070		1070	1150		
Utility Costs										
Central Plant	\$	3.11	\$	0.68	\$	-	\$	-	\$	-
Building	\$	9.45	\$	13.07	\$	13.69	\$	15.46	\$	8.53
Total	\$	12.55	\$	13.75	\$	13.69	\$	15.46	\$	8.53
CO2 Emissions*		72.1		61.0		58.1	:	245.3 2		281.3

* Assumes Current NY ISO Electrical Generation Mix

District vs Individual Building Scale

District Geothermal Systems - Advantages

- Primary heating and cooling source is a ground heat exchanger.
 - Typically vertical boreholes at this scale.
- HDPE Piping has a long lifespan (50-100 yrs)
- Absorbed heat has no associated cost.
- Uninsulated pipe.
- Low grade heat recovery opportunities.

District Geothermal Systems - Disadvantages

- High Capital Cost.
- Space requirements.
- Requires distributed heat pump equipment to provide heating. Increased and distributed maintenance.
- Lower loop dT could mean higher pump requirements compared to hot water systems.

Planning a Geothermal Based System

- Finding the most balanced load profile.
 - Understand the loads and how they may compliment.
 - (i.e., cooling loads in winter, heating loads in summer)
- Identifying open space
 - Greenfield
 - Parking Lots
 - Building Sites (New Construction)
- Direct application or building system retrofit?

Vertical Boreholes

- DR11 HDPE Piping
- 1 1 1/2" Piping
- 5-6" Boreholes
- Filled with cement-based grout.

Demand Side

- Heat Pump Chillers
- Terminal Heat Pumps
- Water to water Domestic Hot Water Heaters
- Water Source HP AHUs and RTUs
- Water Cooled Chillers (Retrofit)

Ground Heat Exchanger Sizing

Variables

- Annual Heating and Cooling Loads
- Peak Heating and Cooling Loads
- Bore Spacing
- Grout Conductivity
- Ground Temperature
- Approach Temperature

GHX – Annual Heat Flows

 Unlike most system types, in addition to the peak design loads the balance of the loads on the GHX over time is a critical component.

Assuming SEER = 15 (Cooling), COP=3.0 (Heating)

GHX – Annual Load

 Unlike most system types, in addition to the peak design loads the balance of the loads on the GHX over time is a critical component.

GHX – Annual Load

<u>Variables</u>

- Annual Heating and Cooling Loads
- Peak Heating and Cooling Loads
- Bore Spacing
- Grout Conductivity
- Ground Temperature
- Approach Temperature

 $L_{c} / L_{H} = 1.95$

Borefield drilling is a messy process.

Borehole Spacing

- In large systems, the interior boreholes have thermal interference with each other.
- More spacing increases the capacity but takes up more space.

(b) 9 BHEs configuration

Figure 6: Effect of ground thermal conductivity on temperature distribution for 3 BHEs configuration after 6 months.

Borehole Spacing Requirements

- 20 ft is the most common spacing
- Trade performance for spacing -> more boreholes -> higher capacity.

Thermal Conductivity Test

- A single borehole is installed and a rig with a pump and heating element is connected to test the thermal response of the geological formation.
- Info the test provides:
 - Thermal Conductivity
 - Geology
 - Drilling Feasibility
 - Estimate of the amount of casing needed.
 - Ground Water Potential.
- Typically, about \$12-15k per location.

Hybrid Solution

- Hybrid systems combined geothermal with and additional a supplemental heating source or heat rejection.
- Goal is to remove the "excess" length and associate space requirements and capital cost.
- Understand if the peak load or annual balance is the limiting factor.

Case Study- Northeast City, Historic Downtown Area

Load Profile

- Load profile consists of 5 buildings, office space, apartments and first floor retail. Most in pre-war buildings apart from one large new construction project
- Aggregate load profile is slightly cooling dominant but limiting design case is heating.

NUMBER OF BORES	15	6.0
	151.0	769.0
Y1 LENGTH/BORE (ft)	461.0	/63.0
Y20 LENGTH/BORE (ft)	467.0	743.0
DESIGN LENGTH/BORE (ft)	76	3.0
Y1 TOTAL LENGTH (ft)	71,864.0	119,101.0
Y20 TOTAL LENGTH (ft)	72,890.0	115,900.0
TOTAL DESIGN LENGTH (ft)	119,1	101.0
AVG CC SPACING (ft)	21	.2

Load Profile

Balancing the Load.

- Hybrid System could reduce the design case from 119,000 ft to 75,000 ft, saves \$650k.
- In this case there was not the available space to put in all the boreholes required by a pure geothermal system.

Or	NUMBER OF BORES	156.0		Percentage Of Heating Peak Block To Boiler	
	Y1 LENGTH/BORE (ft)	459.0	484.0	Peak Block Reduction: 2,222.7 kBtu/hr	
	Y20 LENGTH/BORE (ft)	471.0	456.0	Boiler Capacity: 1,587.7 kBtu/hr	
Number of buildings	DESIGN LENGTH/BORE (ft)	48	4.0		
sarvad can be avnanded					?
serveu can be expanded	Y1 TOTAL LENGTH (ft)	71,641.0	75,549.0	Deventage Of Leating Frange Added Dy Deilar	
to utilize all of the cooling	Y20 TOTAL LENGTH (ft)	73,513.0	71,158.0		
capacity	TOTAL DESIGN LENGTH (ft)	75,5	49.0		
capacity:				Boiler Energy: 188,894.6 kBtu	
	AVG CC SPACING (ft)	21	.2	Boiler Run Hours At Capacity: 119.0 hr	

Types of potential heat sources

Heat Recovery

Pro	Con
 Free Heat Increases system efficiency Recover low grade heat that would not other wise be available. 	 Is not firm capacity, will still require backup heat. Can be expensive to access.

Air Source Heat Pumps

Pro	Con
 Provides Electrified Heat More efficient than electric resistance heating. Good solution if balance is the issue not peak capacity. 	 Limited market availability at district sizes. Large footprint. Also has a peak capacity (low ambient) problem.

Lake/River

Pro	Con
 Carbon Free Source Permitting Challenges Good cooling performance 	 Geographically Specific Gets tired. (Icing can occur over if overused) Heating approach temperatures can be very low.

Thermal Storage

Pro	Con
 Maximizes Equipment Efficiency Extends equipment capacities. Take advantage of off-peak utility rates. Peak Shaving/Demand Response 	 Adds controls complexity. Space requirements for storage tanks. Capital Cost

Legacy Heating Systems

Pro	Con
 Low Capital Cost (Existing) Utilizes existing infrastructure with remaining service life. Can operate at extreme temperatures. 	• Uses fossil fuels.

Electric Boilers

Pro	Con
 Low Capital Cost Small footprint. Electrified heating. Can operate at extreme temperatures. 	 High operating costs Can distort monthly demand charges.

Conclusions

- Study was delayed and is still on going.
- Likely solution includes use of wastewater heat recovery to expand system capacity.
- Capacity only becomes an issue after the 3rd building is connected.
- Electric Boilers may be the cost-effective solution.

Summary

- Understand your load profile.
- Look for synergies.
- Maximize use of open space.
- Low temperature (5G) loops open the options for sharing and supplementing energy.

