Hudson County
Integrating Renewables with a CHP Campus

Presented by:
Heather Thomas, EIT | CHA, Thermal Mechanical Engineer
Agenda

- Introduction to Hudson County Advanced Microgrid (HCAM)
- Driving Force
- Facilities Selected
- Connecting to the Macrogrid
- Electric and Thermal Loads
- Technology Selection
- Existing Assets to Leverage
- Energy and Financial Results
- Questions
Who?

- **Client:**
 - New Jersey Board of Public Utilities (NJBPU)

- **Partners:**
 - CHA Consulting, Inc.
 - Greener by Design, LLC
The U.S. Department of Energy Microgrid Exchange Group provides this definition:

“A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.”

1 https://building-microgrid.lbl.gov/about-microgrids
What?

• NJBPU Town Center Distributed Energy Resources Microgrid Feasibility Study Incentive Program
 – Exclusively intended for a project that includes multiple critical facility customers in a single municipality developed as an advanced microgrid
 – Requires a nucleus of critical buildings and customers that can provide essential services and emergency energy services under “black sky” conditions in a cost effective manner
 – Must also operate in a cost effective manner 24-7 under “blue sky” conditions
Where?

- Since Hudson County is a large area to cover, the focus of the study was in the Town of Secaucus, NJ, specifically around County Avenue where the majority of the critical risk facilities were identified.

- Proposed Critical Facilities included:
 - 4 FEMA Tier IV facilities
 - 10 FEMA Tier III facilities
 - 5 FEMA Tier II facilities

\[
813,000 \text{ ft}^2 \quad 147,000 \text{ MMBTU annual energy use}
\]
Why?

- Major driving force was the effect of Hurricane Sandy on the Hudson County Township
- The storm was ranked #5 on The Hudson Reporter's 2013 list of the 50 most influential people and entities in Hudson County
Why?

• Benefits of Microgrids include:
 – Improving local energy delivery
 – Increasing reliability
 – Saving money
 – Generating revenue
 – Aiding economic growth
 – **Making the grid more resilient**
 – Helping to counter climate change
How?

• **Step 1** – Determine utility load profiles
 • Electrical and thermal

• **Step 2** – Define design/evaluation criteria of project
 • Financial, resiliency, environmental, spatial, availability, redundancy, simplicity/operability

• **Step 3** – Analyze utility outputs for DER technologies to satisfy dynamic load profile
 • Is dynamic load profile satisfied?
 • Consider constraints of respective connection to macrogrid (feeder) & host facility
 • Consider limitations of selected DER technologies
Using DER-CAM to Analyze Microgrids

- NJBPU requested that we use DER-CAM to analyze the recommended microgrid
- DER-CAM: Distributed Energy Resources Customer Adoption Model (DER-CAM)
 - Free analysis tool for optimal DER investment selection
 - Continually developed by Berkeley Lab since 2000
Daily Load Profile (by Month)

Meadowview Complex and Alaris Health
Technology Selection - Microturbine

- Produces electricity and “waste heat” in the form of hot exhaust gas
- Energy from exhaust gas can be transferred to usable thermal energy in the form of hot water, steam, or chilled water with an absorption chiller
Technology Selection - Microturbine

- A suitable microturbine array which we used in our analysis is Capstone’s C1000S microturbine combined with Cain’s heat recovery unit (exhaust steam generator)
Technology Selection – Solar

• Photovoltaic (PV) devices convert light energy to electricity
• Renewable energy source, but not always available
• Requires space either on ground level, on rooftops, or as canopies
Existing Assets to Leverage (CHP)

- Meadowview Complex has a utility corridor (underground tunnel network) for steam and condensate circuit emanating from the Powerhouse.
- This existing distribution infrastructure is a key attribute of the microgrid project’s feasibility allowing a CHP-based solution to serve as the main DER for this project.
- Agglomerate loads to serve.
Existing Assets to Leverage (PV)

• Secaucus Town Hall / Police Station site contains solar photovoltaic (PV) canopies of approximately 130 kW and two electric vehicle (EV) Class II charging stations (top)
• 600 kW rooftop solar array is already planned for Meadowview Complex
• Meadowview Complex has a large field with good exposure to the sun which could potentially house future solar panels (bottom)
• The UPS facility south of Meadowview Complex has 1.2 MW of rooftop solar which “could” be added to the microgrid during a blacksky event
Design/Evaluation Criteria of Project

- As mandated by NJBPU, the main criteria for designing and evaluating this microgrid project was:

 RESILIENCY

- Financial
- Environmental
- Spatial
- Availability
- Redundancy
- Simplicity/operability
<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Risk Category</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secaucus Town Hall / Police Station</td>
<td>4</td>
<td>- existing solar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- electrical backup during blacksky event</td>
</tr>
<tr>
<td>Meadowview Complex (including Alaris Health)</td>
<td>2, 3, 4</td>
<td>- significant electric load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- significant thermal load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- planned 600 kW solar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- room for additional solar and CHP/boilers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- existing steam tunnel</td>
</tr>
<tr>
<td>Secaucus Housing Authority #2</td>
<td>3</td>
<td>- electric and thermal loads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- rooftop area for solar</td>
</tr>
<tr>
<td>United Parcel Service (UPS)</td>
<td>2</td>
<td>- existing 1.2 MW solar potentially available for blacksky event</td>
</tr>
</tbody>
</table>
Topology Development in DER-CAM

- Each facility is connected together so that combined loads can be considered in concert
- Red lines indicate the thermal loop (steam from power house)
Analysis Results (1)
Analysis Results (2)

January Electricity and Heating Dispatch
Analysis Results (3)

July Electricity and Heating Dispatch
Description of Overall Costs and Revenues

<table>
<thead>
<tr>
<th>Microgrid Component</th>
<th>Assumption</th>
<th>Year 1 Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV across all facilities</td>
<td>$7.50 / kW</td>
<td>$3,728</td>
</tr>
<tr>
<td>CHP Natural Gas Cost</td>
<td>$0.64 / therm</td>
<td>$662,788</td>
</tr>
<tr>
<td>CHP Maintenance</td>
<td>$0.035 / kWh</td>
<td>$301,173</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microgrid Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-mount/Rooftop Solar PV</td>
<td>$110,500</td>
</tr>
<tr>
<td>Carport Solar PV</td>
<td>$1,138,621</td>
</tr>
<tr>
<td>CHP generator sets at the Meadowview Power House</td>
<td>$2,675,200</td>
</tr>
<tr>
<td>Steam and electric distribution to Secaucus Housing #2</td>
<td>$1,512,000</td>
</tr>
<tr>
<td>SCADA and Switchgear (Transfer-Trip Switch, ATS, Switchgear, Transformer at Town Hall)</td>
<td>$850,000</td>
</tr>
<tr>
<td>Soft Costs (Contractor Fees, Development Fees, Project Management, Engineering Support, Permitting, Interconnection Applications)</td>
<td>$1,645,041</td>
</tr>
<tr>
<td>Boiler at the Meadowview Power House</td>
<td>$1,103,360</td>
</tr>
<tr>
<td>Total Project Cost Estimate</td>
<td>$9,034,722</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy</th>
<th>Annual Production</th>
<th>Unit Price</th>
<th>Year 1 Energy Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV Electricity to Alaris Health / Meadowview Complex</td>
<td>555,261 kWh</td>
<td>$0.112 / kWh</td>
<td>$62,189</td>
</tr>
<tr>
<td>Solar PV Electricity to Secaucus Housing Authority #2</td>
<td>126,080 kWh</td>
<td>$0.150 / kWh</td>
<td>$18,912</td>
</tr>
<tr>
<td>CHP Electricity to Alaris Health / Meadowview Complex</td>
<td>7,959,250 kWh</td>
<td>$0.112 / kWh</td>
<td>$891,436</td>
</tr>
<tr>
<td>CHP Electricity to Secaucus Housing Authority #2</td>
<td>69,244 kWh</td>
<td>$0.150 / kWh</td>
<td>$10,387</td>
</tr>
<tr>
<td>CHP Steam to Alaris Health / Meadowview Complex</td>
<td>277,796 therms</td>
<td>$0.7529 / therm</td>
<td>$209,153</td>
</tr>
<tr>
<td>CHP Steam to Secaucus Housing Authority #2</td>
<td>34,700 therms</td>
<td>$1.0118 / therm</td>
<td>$35,108</td>
</tr>
<tr>
<td>Total Revenue from Energy Sales</td>
<td>$1,227,185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Analysis assumes that a non-utility, third party will develop the microgrid through a DBOOM model (design, build, own, operate and maintain)
Final Recommendations to Client

• Proposed DER assets to be integrated are:
 – 1,200 kW Microturbine with Heat Recovery Steam Generator at Meadowview Complex Boiler House
 – 600 kW solar already planned + 405 kW solar in field at Meadowview Complex
 – 92 kW solar on roof of SHA #2
 – 153 kW existing solar canopies at Town Hall/Police Station

• These DERs are estimated to be able to generate:
 – > 10,000,000 kWh of electricity annually
 – ~ 328,000 therms of usable heat
Questions?
Hudson County
Integrating Renewables with a CHP Campus

Thank you!