Considering District Energy Based on Residual Municipal Solid Waste Energy Plant

Case Study: Minneapolis North Loop Development

June 30 2015 Ehsan Dehbashi, Principal Joe Witchger, VP. & Sr. Mechanical Engineer Energy & Infrastructure Group HGA Architects & Engineers



Overview

Hennepin Energy Recovery Center MSW Power Plant

Integrated District Energy Master Planning

Downtown Minneapolis North Loop

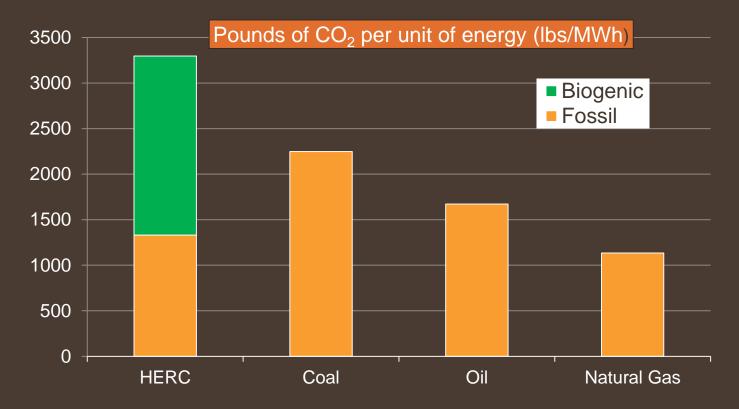
Existing WtE Plant - Downtown Minneapolis

Hennepin Energy Recovery Center (HERC)

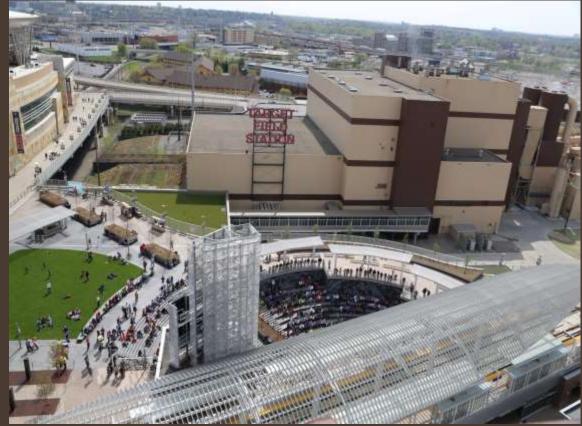
- ▶ 365,000 tons/year of MSW.
- Steam Turbine 38.7 MW at 350,000 lbm/hr.
- Benefit: The facility helps meet the state's renewable energy goal of 25 percent of energy from renewable sources by 2025.
- Reduce the release of GHG emissions by about 255,000 metric ton/year.
- Use some low grade heat for snow melting the public plaza area.
- Interconnects with NRG district steam system.

Existing Infrastructure

ha


ha.

CO2e Emissions of MSW vs Fossil Fuel



North Loop - Downtown Minneapolis

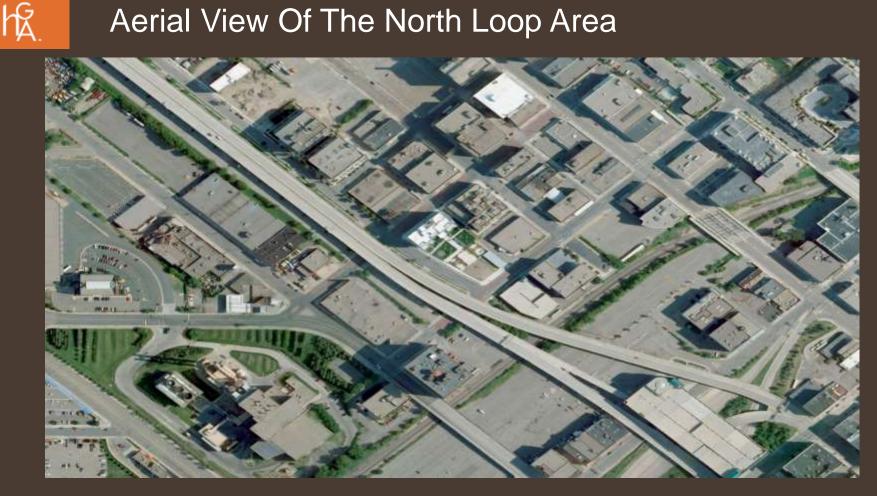
NORTH LOOP

Minneapolis' Fastest Growing Community:

- Target Field, Home of Minnesota Twins, and Timberwolves
- Planned Development for Commercial Office Buildings
- New and existing low rise apartments/condominiums

North Loop - Minneapolis

hg

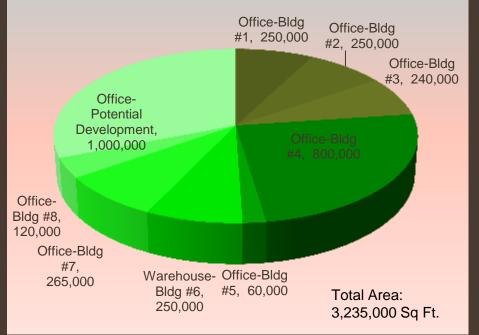


North Loop - Minneapolis

Aerial View Of The North Loop Area

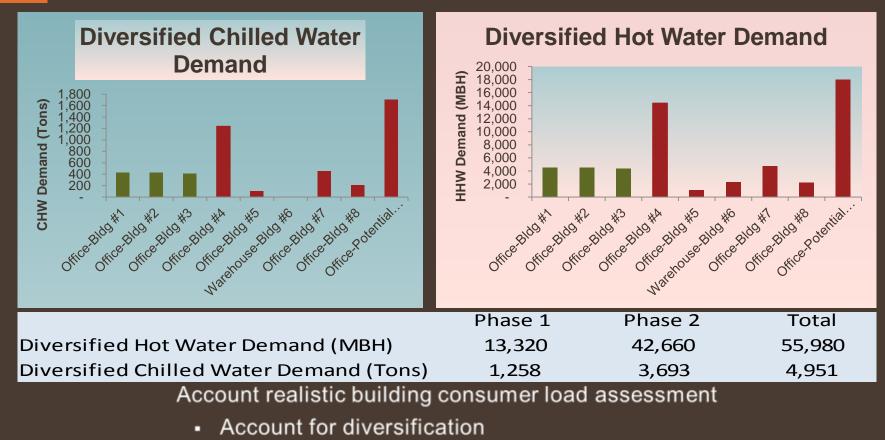
District Energy Master Planning

HGA Study

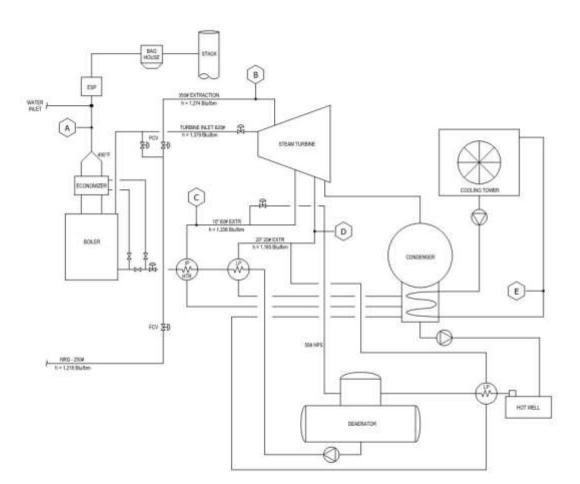

- MSW Renewable Based Community District Energy
- Modern Low Temperature Hot Water Technology
- Cost Effective Phased Approach
- Phase 1 Anchor Customers, 3-4 Buildings
- Phase 2 Full Scale, 3 Million Square Feet
- Substantial CO2e Reduction
- Reliable, Efficient, and Resilient

Building Space Projection

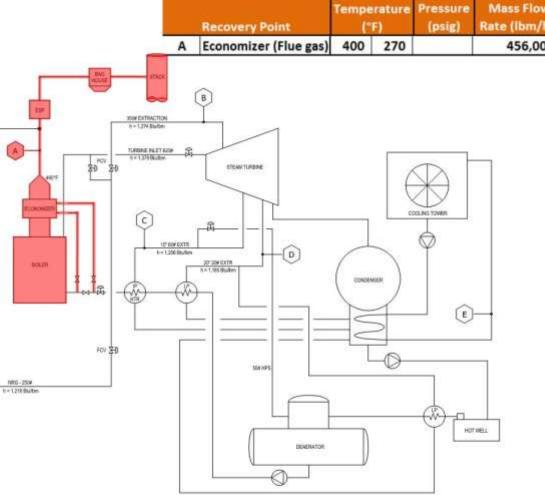
Potential Customer Base: Square Footage


Building Type/Usage	Phase 1(SF)	Phase 2(SF)	Total Space (SF)
Dunuing Type/Osage	riase (or)	111036 2(01)	
Office-Bldg #1	250,000	-	250,000
Office-Bldg #2	250,000	-	250,000
Office-Bldg #3	240,000	-	240,000
Office-Bldg #4		800,000	800,000
Office-Bldg #5	-	60,000	60,000
Warehouse-Bldg #6	-	250,000	250,000
Office-Bldg #7	-	265,000	265,000
Office-Bldg #8	-	120,000	120,000
Office-Potential Development	-	1,000,000	1,000,000
Total	740,000	2,495,000	3,235,000

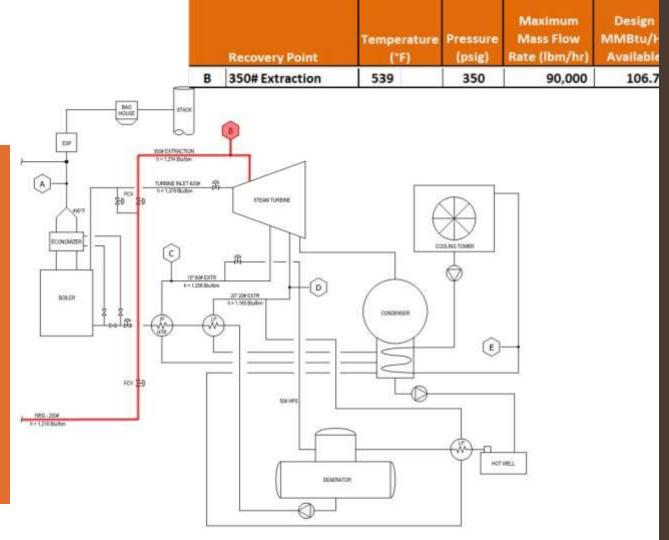
Account building space projection


- By phased approach
- By building type i.e. commercial, hotel, residential, office

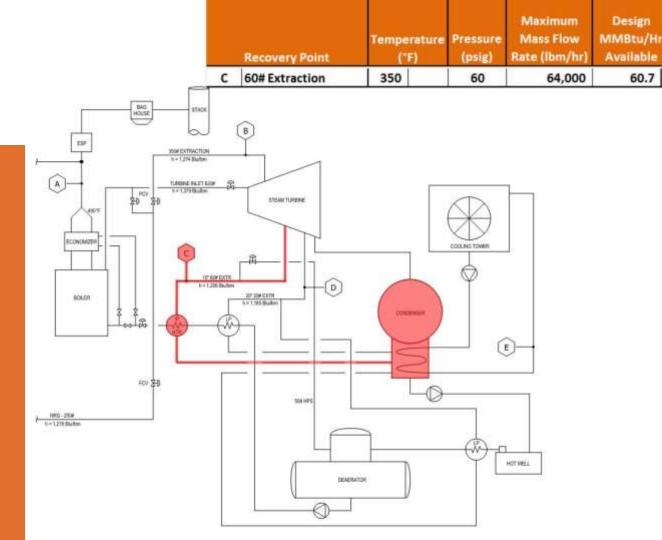
Thermal Load Analysis

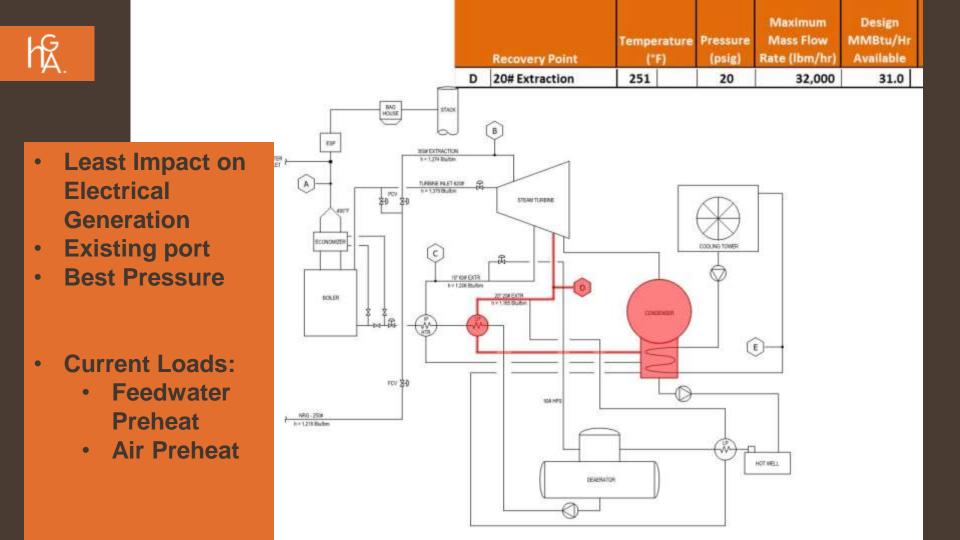


Design Maximum Pressure Mass Flow MMBtu/H Temperature **Recovery Point** Rate (lbm/hr) Available ("F) (psig) Economizer (Flue gas) 400 270 456,000 19.0


- Waste Heat •
- **Reduces water** • Use
- **Available Space** • in Breeching and Plant
- **Before Emission** • **Controls**
- **Available Energy** • **Fluctuates over** Time

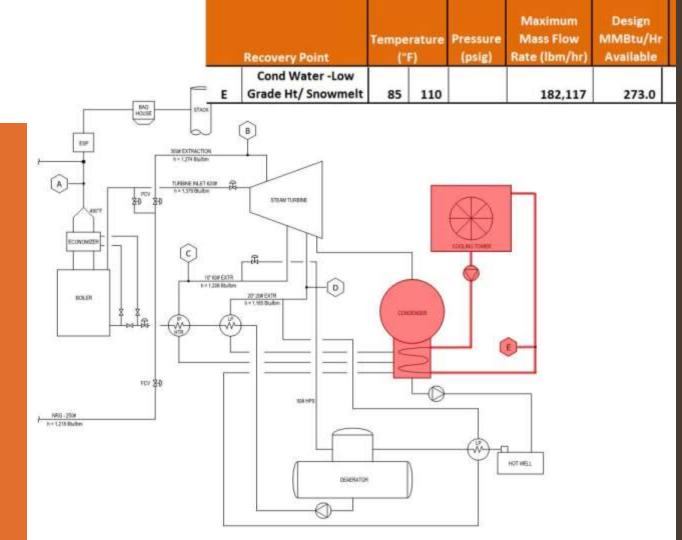
Largest Available
 Source


- Existing Export
 Contract
- Greatest impact on Electrical Generation



ha.

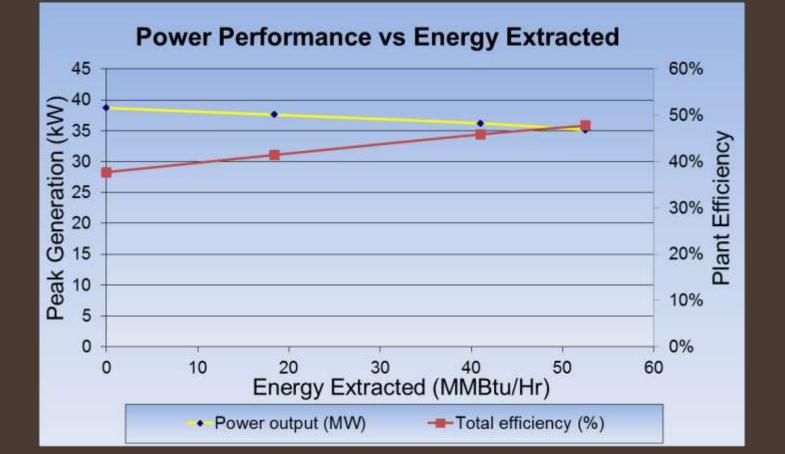
 Less Impact on Electrical Generation


- Existing port
- Current Loads:
 - Feedwater Preheat
 - Deaerator

- Waste Heat- No Impact on Electric Generation
- Largest Source
- Good for Heat
 Pump Loop
- Low Grade Heat
- Largest Piping required for District Energy
- Current Loads:
 - Snowmelt

	Recovery Point	Tempe (°	rature F)	Pressure (psig)	Maximum Mass Flow Rate (lbm/hr)	Design MMBtu/Hr Available	Existing Diversified Flow (Ibm/hr)	Existing Diversified MMBtu/Hr Available
	Turbine Inlet	75	50	620	350,000	147.0	300,000	
Α	Economizer (Flue gas)	400	270		456,000	19.0	390,857	6.9
В	350# Extraction	539		350	90,000	106.7	25,000	57.1
С	60# Extraction	350		60	64,000	60.7	53,500	1.4
D	20# Extraction	251		20	32,000	31.0	26,500	1.0
	Cond Water -Low							
Е	Grade Ht/ Snowmelt	85	110		182,117	273.0	-	258.0
F	Blowdown	180	110		7,000	0.5	6,000	0.4
					Total Available (MMBTU/HR)		324.8	
					Extraction Ene	rgy Available	(MMBTU/HR)	59.5

					Maximum	Design	Existing Diversified	Existing Diversified
		Tempe			Mass Flow	MMBtu/Hr	Flow	MMBtu /Hr
	Recovery Point	(°	F)	(psig)	Rate (lbm/hr)	Available	(lbm/hr)	Available
	Turbine Inlet	75	50	620	350,000	147.0	300,000	
Α	Economizer (Flue gas)	400	270		456,000	19.0	390,857	6.9
В	350# Extraction	539		350	90,000	106.7	5,000	78.9
С	60# Extraction	350		60	64,000	60.7	40,200	15.2
D	20# Extraction	251		20	32,000	31.0	13,300	15.2
	Cond Water -Low							
Ε	Grade Ht/ Snowmelt	85	110		182,117	273.0	-	258.0
F	Blowdown	180	110		7,000	0.5	6,000	0.4
					Total Available (MMBTU/HR)		374.6	
					Extraction Energy Available (MMBTU/HR)			109.3

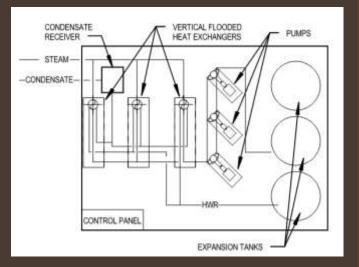


Plant Efficiency & Derate at Steam Extraction


					Th Ene	rgy	Cost
		Power	Total	(\$	/MMBt	u) B	ased on
Extraction	Extraction	output	efficiency	Los	st Electr	ical	Revenue
(Mlbs/hr)	(MMBtu/hr)	(MW)	(%)		(\$/1	NW I	H)
-	-	38.70	38%	\$	30.00	\$	60.00
19.00	18.42	37.59	41%	\$	1.81	\$	3.62
42.80	41.00	36.20	46%	\$	1.83	\$	3.65
56.00	52.50	35.11	48%	\$	2.05	\$	4.10
99.80	90.65	38.70	54%	\$	2.39	\$	3.98
	Waste Heat Recovery from Condenser Water						
-	52.50	38.70	51%	\$	-	\$	-

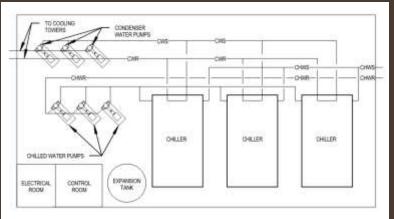
Plant Efficiency & Derate at Steam Extraction

Thermal Piping Network - Anchor Customer-Phase 1



Thermal Piping Network - Full Build-out-Phase 2

h£.


Capital Expenditure - Heating System

	Existing HERC Plant-Mech Room	Parking Ramp C	
Heating System	Plant #1	Plant #2	Total
New Heating Plant	\$564,400	\$564,400	\$1,128,800
Plant piping	\$250,000	\$0	\$250,000
Plant Building Site	\$ 0	\$300,000	\$300,000
Contractors Gen. Cond.Fee/Bond/Insurance	\$90,300	\$224,700	\$315,000
Est. Design Fee	\$81,400	\$98,000	\$179,400
Contingency-15%	\$147,915	\$178,065	\$325,980
SUBTOTAL Plant Cost	\$1,134,015	\$1,365,165	\$2,499,180
Distribution Piping:			
Buried Steam Piping System	\$O	\$1,532,000	\$1,532,000
Buried HHW piping	\$235,500	\$174,000	\$409,500
SUBTOTAL Buried Piping	\$235,500	\$1,706,000	\$1,941,500
GRAND TOTAL	\$1,369,515	\$3,071,165	\$4,440,680
Building Interface*	\$379,260	\$193,500	\$572,760
* To be negotiated with the potentia	. ,	·	,

h£.

Capital Expenditure - Cooling System

Cooling System	Existing HERC Plant #1	Plant #2	Total
	Phase 1	Phase 1	
Cooling Plant	\$1,820,600	\$0	\$1,820,600
Cooling Towers	\$400,000	\$0	\$400,000
Electric Equipment, Wiring	\$300,000	\$0	\$300,000
Plant Building Site	\$0	\$0	\$0
Plant Piping	\$350,000	\$0	\$350,000
Contractors Gen.Cond Fee/Bond/Insurance	\$403,300	\$0	\$403,300
Design Fee	\$294,700	\$0	\$294,700
Contingency-15%	\$535,290	\$0	\$535,290
SUBTOTAL	\$4,103,890	\$0	\$4,103,890
Distribution Piping:			
Buried Chilled Water Piping Network	\$329,500	\$914,500	\$1,244,000
SUBTOTAL	\$329,500	\$914,500	\$1,244,000
GRAND TOTAL	\$4,433,390	\$914,500	\$5,347,890
Building Interface*	\$624,750	\$318,750	\$943,500

hQ.

Phase 1 Heating System Summary Cost

Heating Plant	\$2,499,000
Distribution Piping	\$1,941,000
Building Interconnection	ŞO
Subtotal	Ş4,440,000

Operating Assumption	
Heating Maintenance	Ş12,654
Incremental Labor	\$30,000
Total Annual Admin	Ş7,500
Fuel Cost	Ş121,978
Capital Recovery	Ş368,558
Total Fixed Cost	Ş418,712
Variable Cost	\$121,978

District Hot water Heating Pricing Structure	
Connected Bldg Square Footage	740,000
Peak Diversified Demand (MMBtu/hr/Sqft)	18
Peak Diversified Heating Capacity (MMBtu/hr)	13.32
Equivalent Full Load Hours	1800
Annual Heating Consumption (MMBtu)	23,976
Demand Charge (\$ per MMBtu/hour-month)	2620
Variable Charge (\$ per MMBtu)	5.09
Availability	93%
Boiler Efficiency	80%
MSW Fuel (\$/MMBtu)	4.00
Heating Unit Cost (\$/MMBtu/hr)	21

District Hot Water Heating Drising Structure

Phase 1 Cooling System Summary Cost

District Cooling Pricing Structure	
Peak Cooling Demand (ton/sq.ft.)	575
Peak Cooling Capacity (ton)	1287
Equivalent Full Load Hours	900
Cooling Plant Efficiency (Kw/Ton)	0.70
Electrical Price (\$/KWh)	0.08
Annual Cooling Consumption (ton-hr)	1,158,261
Demand Charge (\$ per ton per month)	27
Variable charge (\$ per ton-Hr)	0.09
Cooling unit cost (\$/ton-hr)	0.45

Capital Cost	Pha	se 1
Cooling Plant	\$	4,103,000
Distribution Piping	\$	1,244,000
Building	\$	-
Subtotal	\$	5,347,000

Operating Assumption	Cost(\$)
Capital Recovery	341,457
Electricity	64,863
Water and Sewer, Chemical	40,539
Subtotal Cooling Consumtion	105,402
Subtotal Cooling Demand	411,131

Financial Projection- Phase 1

Building Conventional System Pricing				
Average Heating+Cooling Cost (\$/Sft)- 20			1.85	
Average H		g 003t (\$/01t) 20	1.00	
District The	ermal Pricing			
Average Heating + Cooling Cost (\$/SF)-			1.75	
	_	_		
Returns				
IRR			5.01%	
District Heating and Cooling Savings				
Average Over 20 yrs			4%	
Cumulative			\$1,805,000.00	

Financing			
Equity	10%		
Debt Amount (1000\$)	10,049		
Interest Rate	5.00%		
Capital Recovery Factor	7.095%		
Term	25		

Potential Changes to Revenues

- Reduced Direct Electric Revenue \$72K-\$158K
- Thermal Revenues \$480K-\$800K
- Additional O&M Costs \$10-\$30K
- Reduced Water Costs \$22-\$50K
- Other Potential Revenue streams
- Carbon Credits

Major Benefits & Opportunities

- Improved Plant Efficiency- improves with added customers.
- Reduced water use and discharge.
- Reduces fossil fuel use
- Renewable Energy.
- Lower City Carbon Footprint relative to conventional equipment.
- Current PPA expires in three years.
- > Urban area with potential rapid development.
- Interconnect with NRG district steam system

Challenges

- Timing and uncertainty among the developers for the anchor customers.
- > New Building on Independent System.
- Area development vs building development.

- Back-up sources - permitting for on-site heating generation.

Rate structure between steam and hot water.