LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

Optimizing the University of Virginia Health System Loop

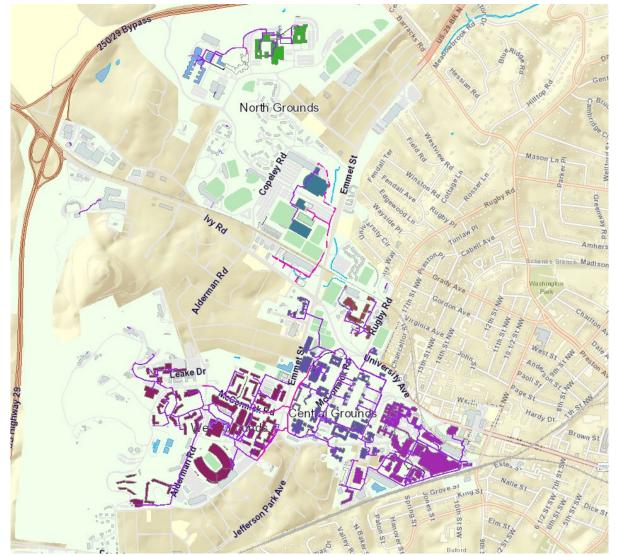
Paul Stevens – University of Virginia

Brock Frisbie – Optimum Energy

Agenda

- UVA Background
- UVA Health System Loop Overview
- Optimization Partner Selection
- Engineering Study and Planning
- Optimization Implementation
- Project Results and Next Steps

UVA Chilled Water System Summary


Installed Capacity 44,670 Tons Peak Demand ~35,000 7 CHW Loops **12** Plants 16 Staff Annual Electric Bill \$5.5M Annual Cost Of Water ~\$1.3M Asset Value ~\$220M

UVA Chilled Water Area Served

Loop Efficiencies

	Loop Efficiency	- Three Years of	UVA Goals		
Loop	Ton-hrs	% of Total	kWh	*kW/Ton	2030 – Carbon Neutra
McCormick Road	61,751,899	24%	53,957,784	0.87	
Central Grounds	29,744,590	12%	25,453,199	0.86	2050 – Fossil Free
Carr's Hill	4,262,019	2%	4,489,638	1.05	
Massie	5,819,168	2%	8,345,466	1.43	How do you accelerate plant efficiency?
Health System	142,500,082	56%	111,747,606	0.78	
North Grounds	8,148,205	3%	6,560,299	0.81	
Total	252,225,964		210,553,992	0.83	

*kW/Ton is equal to Entire plant electrical consumption / BTUs sold (consumed)

UVA Chilled Water Health System Loop

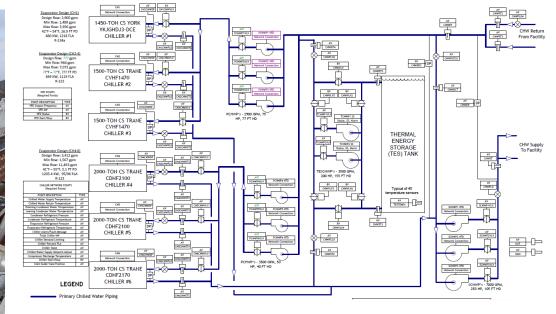
Plant Name	Chiller Name	Capacity (Tons)	Year Installed	Age	Pumping Configuration
North	HRC-1	1,800	2022	0	Primary/Secondary
South	Chiller 1	1,500	2001	21	Primary/Secondary
South	Chiller 2	1,500	2003	19	Primary/Secondary
South	Chiller 3	1,500	2003	19	Primary/Secondary
South	Chiller 4	2,000	2008	14	Variable Primary/Secondary
South	Chiller 5	2,000	2008	14	Variable Primary/Secondary
South	Chiller 6	2,000	2011	11	Variable Primary/Secondary
East	Chiller 1	2,000	2013	9	Variable Primary
East	Chiller 2	2,000	2013	9	Variable Primary
East	Chiller 3	2,000	2013	9	Variable Primary
East	Chiller 5	2,000	2018	5	Variable Primary
-	-	20,300	-	-	

Google Maps

SOUTH ADD TES

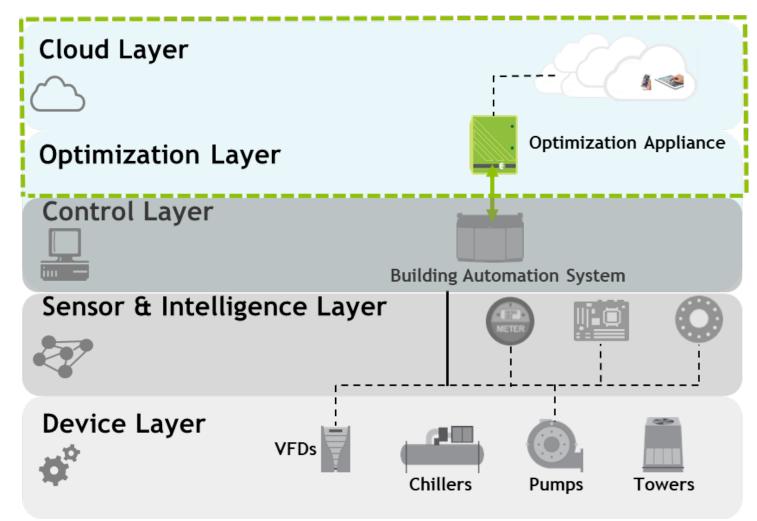
SOUTH

NORTH


EAST

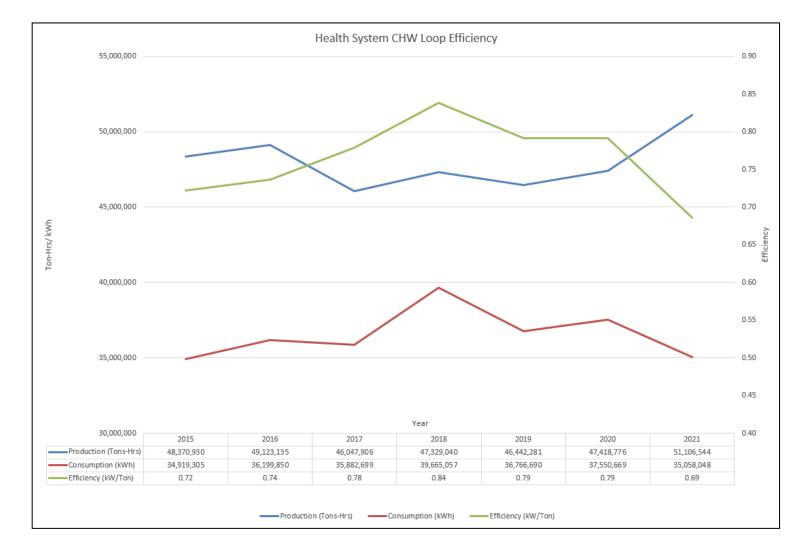
Engineering Study and Planning

- On site assessment of equipment, piping layout, and existing conditions
- Create a detailed scope of work to be implemented
- Determine project savings
- Review of existing automation logic
- Assemble integration documents
- Final deliverable



Optimization Implementation

- Treat 2 physically separate plants as 1 large plant
- Mapping and confirming **2200 points**
- Incorporating a thermal energy storage tank
- Efficient chiller staging based on load, outside air conditions
- Rigorous testing to ensure resiliency in logic
- Monitoring period for operation, efficiency



Project Results

- Average annual efficiency of 0.652 kW/Ton
- 90% of operating hours in Optimized Mode
- Project Cost of \$700k
- Simple Payback of ~2 years

Next Steps

- Monitor savings on a monthly basis
- Provide equipment performance metrics on a monthly basis
- Monitor seasonal changes and adjust as necessary
- New equipment at North Plant
- Optimization of Central Campus

Questions?

Thank You!

Paul Stevens University of Virginia

Brock Frisbie Optimum Energy

