

Evaluating Viability for Reclamation and Reuse

Bob Salvatelli, NextEra Distributed Water

NEXTERA ENERGY HAS TWO PRIMARY BUSINESSES, SUPPORTED BY SEVERAL KEY SUBSIDIARIES

SUSTAINABLE WATER/NEXTERA ENERGY: THE WATERHUB®

WHAT WE DO:

Turn-Key Developer - Water as a Service

Decentralized Reclamation and Reuse

Problems We Solve For:

Capacity Constraints

LEADING THE WAY CampusEnergy2022

Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Resiliency Against Aging Infrastructure

Mitigate Rising Rates

OUR SOLUTION: THE WATERHUB®

Decentralized Systems for Blackwater Capture, Treatment, and Beneficial Reuse

Eco-Engineered Reuse Systems Designed for Various Market Sectors

WATER PROCESSING AGREEMENT

NEXTERA'S INTEGRATED DEVELOPMENT AND SERVICE PERFORMANCE COMMITMENT

Customer Benefits

- No upfront capital costs
- No operational oversight obligations
- Utility plant operational resiliency
- (N+1 water supply)
- Facility sustainability and corporate ESG goals
- Typical savings over business-as-usual
- 5%-10% typical savings will provide millions over contract term

Customer Responsibilities

- Minimum annual purchase of compliant reclaimed water
- Access to land for WaterHub footprint (~6,000 sf) and pipeline easement
- 30-year water processing agreement

NextEra Energy Responsibilities

- Proper system engineering & design
- Construction and development costs
- Facility operational & maintenance cost
- Production of compliant reclaimed water
- Long-term upkeep of the system

Project Qualification

NEXTERA WILL EVALUATE OPPORTUNITIES RISK-FREE

Historical Water Use

- Total inbound water
- Non-potable demand: chiller/cooling tower make-up, boiler make-up
- Any supplemental sub-metering data

Historical Economics

- Cost paid for water and sewer (\$/kgal)
- A copy of recent water & sewer bills
- Wastewater surcharge history, if applicable

Waste Quality & Pre-treatment Systems

- Water-related permits
- On-site wastewater treatment and/or reuse systems

UTILITY PLANT REVIEW

PEAK SEASONAL DEMANDS REQUIRE HIGH TURNDOWN RATIO BETWEEN SUMMER AND WINTER... ECONOMIC SWEET-SPOT FOR Hydraulic design is 600,000 GPD

TARGETED UTILITY PLANT DEMANDS

Central Utilities Plant Water Use by Type

Seasonal Non-Potable Demands & Wastewater Resources

150 MGY Total Potable Water Use

(155 MGY including Condensate Use)

HISTORICAL WATER & SEWER RATES

Water & Sewer Cost: \$28.82 /kgal

- Increasing Block Tiered Structure
- Block 5- Highest Tier (99% of Costs)

Historical Market Rate Escalation

PROJECT MIMICS DUKE & UT-A PROCESS DESIGN APPROACH BUT INCLUDES CERAMIC MEMBRANES IN BASE DESIGN SCENARIO.

PRELIMINARY DESIGN BASIS

Parameter	Unit	Influent Basis	Effluent Basis
Flow	MGD		0.6
BOD	mg/L	200	< 10
TSS	mg/L	195	< 5
Total Nitrogen	mg/L	35.0	< 10
Total Phosphorus	mg/L	5.6	< 0.5
TKN	mg/L	14	
Ammonia-Nitrogen	mg/L	20	
рН	S.U.		6.5 - 8.5
Fecal Coliform	#/100 mL		< 14
Turbidity	NTU		< 2
Conductivity	mmho	1,400	
Total Dissolved Solids	mg/L	875	

Targeting Class A Reclaimed Water

TECHNOLOGY IS CUSTOM SELECTED FOR EACH PROJECT BASED ON SITE-SPECIFIC WATER CHARACTERISTICS AND DESIRED POINTS OF REUSE

WATERHUB® TECHNOLOGY

SEWER MINING

- » Wastewater Mining Systems
- » Lift Stations

SCREENING & FILTRATION

- » Drum Screen
- » Odor Control
- » MBR
- » Poly/Ceramic Membrane
- » Ultrafiltration

POLISHING & DISINFECTING

- » UV Disinfection
- » Reverse Osmosis
- » Capacitive Deionization

THE WATERHUB® AT EMORY UNIVERSITY

CLIENT TYPE

Private University

LOCATION

Atlanta, GA

HYDRAULIC CAPACITY

440,000 GPD

FOOTPRINT

Building: 3,500 ft² Lower Site: 3,000 ft²

COMMERCIAL OPERATION

May 2015

END USES

Boiler Makeup Cooling Tower Makeup Toilet Flushing

GOALS / OUTCOMES

40% Reduction in Potable Water 66% Decrease in Discharge

TECHNOLOGIES APPLIED

Hydroponic – MBBR Reciprocating Wetlands

SUSTAINABILITY SHOWCASE

THE WATERHUB® AT PHILIP MORRIS USA

CLIENT TYPE

Industrial Manufacturing

LOCATION

Richmond, VA

HYDRAULIC CAPACITY

650,000 GPD

FOOTPRINT

Building: 8,200 ft²

Storage Tank: 1,200 ft² (24 ft. hgt. & 39 ft. dia.)

COMMERCIAL OPERATION

August 2019

END USES

Cooling Tower Make-Up
Open-Aired Chiller Make-Up

TECHNOLOGIES APPLIED

- Hydroponic MBR
- RO Polishing

THE WATERHUB® AT PMUSA SITE MAP

LEADING THE WAY
Campus Energy 2022
Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

THE WATERHUB® AT PMUSA PROCESS DESIGN

LEADING THE WAY
CampusEnergy2022
Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

THE WATERHUB® AT PIEDMONT ATLANTA HOSPITAL

CLIENT TYPE

Commercial Healthcare Campus

LOCATION

Atlanta, GA

HYDRAULIC CAPACITY

250,000 GPD

FOOTPRINT

4,300 ft²

COMMERCIAL OPERATION

Anticipated Fall 2022

GOALS

- Resilient Utility Operations
- Water Conservation
- 75% Decrease in Discharge
- Enable Future Development

TECHNOLOGIES APPLIED

Outdoor Hydroponics

Tertiary: Membrane Bioreactor (MBR)
Disinfection: Dual-Stage UV & Chlorine

THE WATERHUB® AT PIEDMONT: DISTRIBUTION NETWORK

THE WATERHUB® AT PIEDMONT: CONSTRUCTION UPDATE

BROKE GROUND OCTOBER 2021, COD EXPECTED OCTOBER 2022

UNIVERSITY OF TEXAS AT AUSTIN WATERHUB®

CLIENT TYPE

Public University

LOCATION

Austin, TX

HYDRAULIC CAPACITY

1,000,000 GPD

FOOTPRINT

15,000 ft²

COMMERCIAL OPERATION

Anticipated Spring 2022

END USES

Cooling Tower Make-Up Boiler Make-Up

TECHNOLOGIES APPLIED

Hydroponics
Membrane Bioreactor (MBR)
Reverse Osmosis

Thank You!

Bob Salvatelli NextEra Distributed Water Bob.Salvatelli@SustainableWater.com

