

Microgrid Systems Design, Optimization, and Risk Drivers

IDEA Campus Energy 2017 February 21, 2017 David R. Tine

Standard Insurance Coverage

Equipment Breakdown

Business Income Extra Expense

Spoilage Damage
Utility Interruption

Typical Insurance vs. Performance Insurance

Property Insurance:

- Insures equipment & business Interruption (BI) losses for covered events
- Deductibles are financial for physical loss and time-based for BI
- Event based, i.e. deductibles are not accrued over policy period
- Common product today

Performance Insurance:

- Insures a minimum level of overall system performance
- Extends Property Insurance to cover performance variables e.g. annual availability or lost kWh
- Broader Coverage:

For property insurance, four 2 hour downtime events may be below the BI time deductible versus performance insurance, an annual cumulative 8 hour downtime would trigger a performance shortfall

Microgrid Risks/Barriers

- Business Enterprise Law
- Land Use Rules
- Public Utility Laws

Financial

- Design funding
- Project/equipment funding

Technology

- Rapid technology advances
- Cyber security

Microgrid Opportunities/ Threats

Insurance Perspective

- Insurance companies are central to the revitalization efforts of communities and businesses as they respond to the effects of natural disasters.
- Two models utilized from the perspective of risk mitigation and insurance:
 - Blackout Risk Modeling
 - Microgrid Reliability Model

"How Reliable is Your Microgrid?" by Richard Jones, Public Utilities Fortnightly, July 2015

Historical Hurricane landfalls 1950 - 2011

NatCatSERVICE

1866 Hartford Steam Boiler

Loss events in North America 1980 – 2013

Geographical overview (including Caribbean and Central America)

© 2014 Münchener Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE – As of February 2014

- Loss events
- Selection of catastrophes
- Geophysical events
 (Earthquake, tsunami, volcanic activity)
- Meteorological events
 (Tropical storm, extratropical storm, convective storm, local storm)
- Hydrological events
 (Flood, mass movement)
- Climatological events
 (Extreme temperature, drought, wildfire)

^{*}Losses in original values

Blackout Risk Model™

Focuses on the U.S. power grid and incorporates extensive data on four peril categories: Hurricanes, winter storms, thunderstorms, and equipment failure or operator error. Wild fires and terrorism attack loss scenarios can also be tested. This includes:

- Severe weather events
- Electrical grid
- Tree proximity to power lines

Blackout Risk Model™ Simulated Power Outage Risk – 5 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 10 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 15 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 20 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 50 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 100 Yr

Blackout Risk Model™ Simulated Power Outage Risk – 150 Yr

Some typical risk model results NY Prize Microgrid: illustration only

Energy Storage (ESS) Duration of 2 Hours – For this situation (modeled in this case only) ESS has significantly less value risk reduction value than the Component Repair Strategy

There is ~ 10% chance that the annual availability will be < 99.96%.

There is ~ 40% chance that the annual Lost Kwh will be < 100.

General Project Results for Complete NY Prize Microgrid Design

- 1. Energy storage has a small but significant risk reduction benefit.
- Weather influences need to be considered during design and construction specifications.
- 3. A robust, fast response repair program has a major risk reduction effect for both availability and lost production risk.
- 4. A Risk Analysis Model can help direct resources to the major risk drivers.
- 5. Standard property insurance is prudent but system performance insurance may help in funding if performance can be related to revenue.

Q&A

David R. Tine Tel. 860 722 - 5749

eMail: david tine@hsb.com

