#### **Campus Energy 2021** BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

# Benefits of Hot Water

Ben Dombrowski, PE – Mechanical Engineer David Bevins – Mechanical Engineer



**Jacobs** Challenging today. Reinventing tomorrow.

#### **Q&A Will Not Be Answered Live**

#### Please submit questions in the Q&A box. The presenters will respond to questions off-line.

# Overview

Steam vs Hot Water for Heating



#### **Quick History Lesson**

#### Steam is self motivated... ...and controllable



#### System Advantages: Generation

#### **Steam System**

#### **Hot Water System**

#### Boiler

Deaerator Feedwater Pumps Blowdown Vessel Flash Tanks Condensate Receivers Condensate Pumps Water Treatment



## System Advantages: Generation

- Increased system efficiency and use of renewable technologies
- Supply water reset control
- Less idle/cycling losses
- Lower conductive losses to ambient
- Little/no make-up water costs
- Lower chemical treatment costs



## System Advantages: Distribution

- Reduced distribution losses
- Corrosion potential in condensate return system
- Manholes not required
- Alternative installation methodology
- Safety system leaks less dangerous
- Pressurized system

# **Typical System Energy Losses**



## By the Numbers: Distribution Capital Cost

- Reduced installation labor
- Fewer components
- Closer to chilled water installation

| Steam | Component      | Hot Water |
|-------|----------------|-----------|
| Steel | Piping         | PP-RT     |
| Gate  | Valves         | Butterfly |
| 3     | Manholes       | 0         |
| 3     | Heat Exchanger | 1         |
| \$4M  | Total          | \$2.5M    |

Example: 1000' piping with three buildings

#### By the Numbers: Production Performance



#### By the Numbers: Production Performance

**Steam CHP** Hot Water CHP Waste Waste 22% Electric 16% Electric 19% 38% Heat Heat 28% 40% Electric Heat Waste Electric Heat Waste

## By the Numbers: Maintenance

\$2,500,000 Components Failures \$2,000,000 Staffing \$1,500,000 \$1,000,000 \$500,000

\$0 Hot Water Steam Plant Distribution Building

## **Building Conversion Diagram**



#### **Building Level Hot Water**



DOMESTIC HOT WATER



FOOD SERVICE



HUMIDIFICATION



**HEATING COILS** 



PROCESS / STERILIZATION

### Phasing

- Targeted approach: dormitories, remote locations, renovations
- Build consensus



# **Case Study**

#### DC Metro Area Campus



# Solution: Energy Exchange

- Split existing steam system into two hot water districts
- Each district optimized to capture full benefits of a heat recovery chiller and energy storage tank
- Looped configuration for resiliency



**Existing Steam** 

#### New Hot Water District Systems

## Life Cycle Savings

#### Rolling 40-year LCCA 48% savings



#### 40-year Greenhouse Gas Production 66% savings



### **Budget Resiliency**



Low yearly O&M costs protect system from future budget cuts

# **Case Study**

University of Florida: Holland Law



# **Site Plan**

#### Existing

- 3000' distribution piping requiring replacement
- Mixture of hot water and steam service

#### Proposed

- New condensing boiler plant and HHW distribution

w/ HHW



### **Mechanical Room Conversion**

- Remove PRV, Condensate Receiver/Pump, Air Separator, DHW Steam-to-HW HEX
- Configuration allows reuse of existing equipment and phasing of construction to reduce system down time



# **Thank You**

Ben Dombrowski, PE – Mechanical Engineer David Bevins – Mechanical Engineer



**Jacobs** Challenging today. Reinventing tomorrow.