

DISTRIBUTED GENERATION FOR LARGE CUSTOMERS

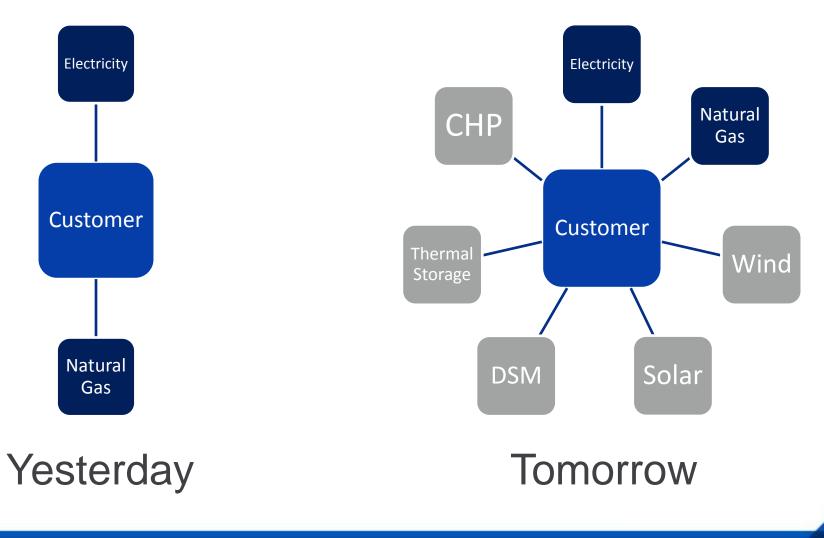
KURT KOENIG, B&M CHUCK HEIDT, GRU

February 11, 2015

CAMPUSENERGY2015

OVERVIEW

- Market Influences for Distributed Generation
- Where it Works
- Utility Involvement
- Case Study: GRU South Energy Center
- Questions & Answers



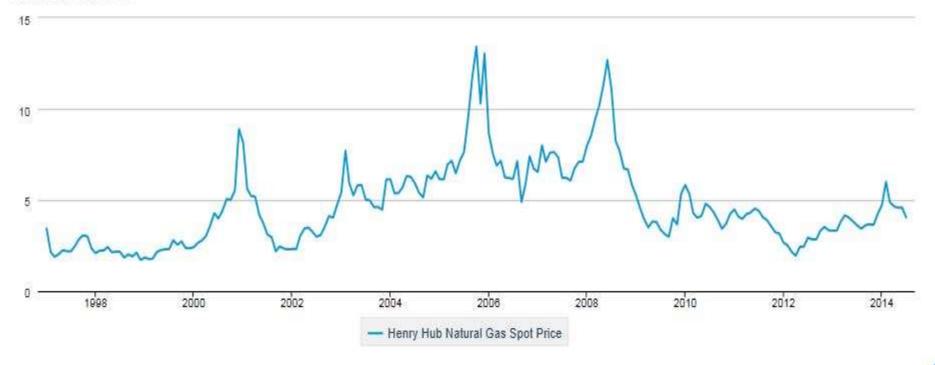
MARKET INFLUENCES

ENERGY DELIVERY

MARKET INFLUENCES

- Over the past 5 years, several key market influences have led to an increased interest in the installation of:
 - Distributed Generation
 - Cogeneration
 - Combined Heat and Power (CHP)
 - Microgrids

- Market influences for onsite generation include:
 - Low natural gas costs and increasing electricity costs
 - Increasing costs to utilities (and central plants) for environmental compliance
 - Necessity of the availability of critical infrastructure in the event of natural or man-made disasters
 - Interest in maintaining manufacturing equipment uptime



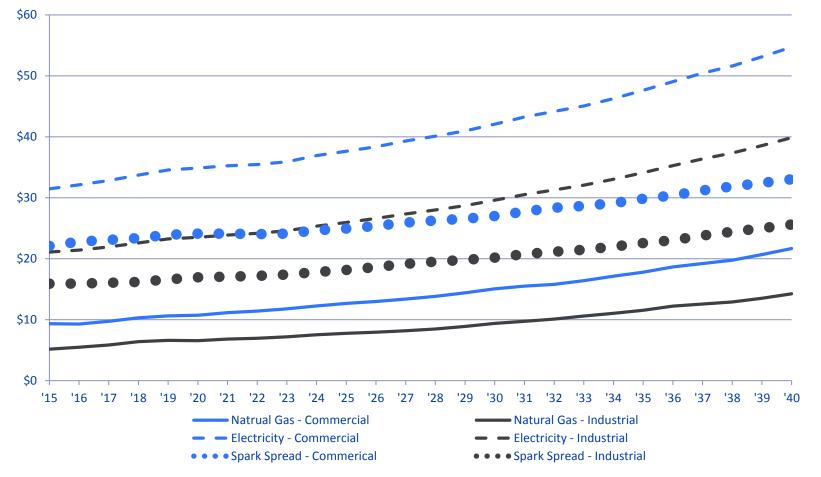
NATURAL GAS PRICES

Historic highs in 2006 and 2008

Average 2014 price: \$4.78/MMBtu

Dollars per Million Btu

ELECTRICITY PRICES


- ► Historic highs in 2008
- ► Average 2014 price:
 - ¢10.50/kWh (commercial)
 - ¢6.91/kWh (industrial)

Cents per kWh 12 -Λ ----- Commercial Avg. Retail Price ----- Industrial Avg. Retail Price

NATURAL GAS AND ELECTRICITY FORECASTS

Natural Gas and Electricity Price, \$/MMBtu (DOE EIA)

EVOLVING ENVIRONMENTAL DRIVERS

- Clean Power Plan Greenhouse Gas (GHG) Regulation
- Clean Air Interstate Rule (CAIR) NO_X and SO₂ regulation to control PM_{2.5}
- New Source Review All criteria pollutants
- Supreme Court Ruling on the Tailoring Rule

RECENT STORMS/UTILITY OUTAGES

WEATHER DROVE 80% OF ALL MAJOR OUTAGES BETWEEN 2003 AND 2012

- Most frequent weather-related causes for utility outages
 - 59% Storms and extreme weather
 - 19% Cold and ice storms
 - 18% Hurricanes and tropical storms
 - 3% Tornadoes

BURNS MEDONNELL.

• 2% Extreme heat and wildfires

Source: Think Progress "Extreme Weather Has Driven A Ten-Fold Increase In Power Outages Over The Last Two Decades"

WHERE IT WORKS

WHY CHP?

- Increases redundancy, reliability, and resiliency
- Efficiency
 - Coal plant: 30-40%
 - Combined cycle plant: 40-50%
 - CHP: 70-90%
- Emissions reductions
- Utility cost savings
- Emergency service

WHY CHP?

Combined heat and power (CHP) provides a source of power <u>and</u> thermal energy that may be <u>black started</u> as part of a <u>microgrid</u> at <u>greater efficiencies</u> and <u>economies</u> than traditional electric generating assets.

- Redundancy
 - Power source
 - Fuel diversity

BURNS MEDONNELL

• Thermal source

- Resiliency
 - Ride through
 - Black start

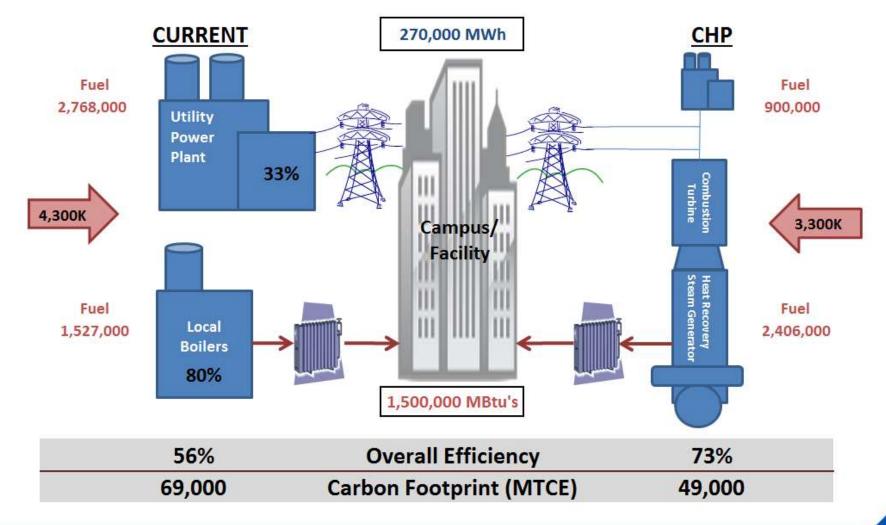
- Reliability
 - High availability
 - React to fuel uncertainty

TYPICAL TECHNOLOGIES

- ► Gas turbines (4-50 MW)
- Reciprocating engines (2-18 MW)
- ► HRSGs (5,000 350,000 lbs/hr)
- Steam turbines (2-50 MW)

TYPICAL TECHNOLOGIES

HEAT RECOVERY POTENTIAL (RULES OF THUMB)


Reciprocating engines

- Approximately 1.2 lbs/hr of 100 psig saturated steam per kW
- Approximately 2.5-3.0 MMBtu of hot water per MW (jacket water and exhaust in series)

- Gas turbines
 - Unfired approximately 4.0-6.0 lbs/hr of 100 psig saturated steam per kW
 - Fired to 1600F approximately 2 x unfired capacity

CHP EFFICIENCY

WHERE CHP?

- University campuses
- Hospitals

BURNS MEDONNELL.

Military bases

- Manufacturing facilities
- Research facilities
- Data centers

Туре	MW	Heat/Power Ratio
Universities	5-30	High
Hospitals	4-10	Low-Medium
Industrial/Manufacturing	5-60+	Medium-High
Government/Military	5-60	Low-Medium
Mixed Use Developments	3-10	Low

UTILITY INVOLVEMENT

UTILITY-OWNED CHP

UTILITIES **INVEST** IN CHP BECAUSE THEY...

- Can enter into long-term contracts with mature costumers and continue or add a predictable revenue stream.
- Low barriers to entry (interconnect, expertise, etc,)
- Can add affordable capacity and potentially forgo the costs associated with upgrading their existing power plants to meet environmental regulations
- Strategic distribution/transmission advantages
- Have access to capital

UTILITY-OWNED CHP

PRIVATE COMPANIES <u>AVOID</u> CHP BECAUSE THEY...

Find capital costs of CHP prohibitive

- Are cautious about entering into the electricity production business, which falls outside of their expertise
- Do not have necessary skills to operate/maintain
- May not be able to take full advantage of all the byproducts/benefits of CHP

UTILITY OWNED CHP

ADVANTAGES TO UTILITY COMPANIES

- Protect load
- Maintain client relationship
- Good will through environmental stewardship
- Gas sales
- Low cost capacity
- Distribution relief

BURNS MEDONNELL.

ADVANTAGES TO CUSTOMERS

- Cost savings
- Meets environmental goals
- Energy backup
- Improved reliability
- Resiliency
- Real estate
- Core business

Good Partnership Candidates

- Greenfield Facilities
- Open Markets (PJM, ERCOT, etc)
- Old/Inefficient Equipment
- Predictable consistent thermal loads
- Key distribution location
- Overall Size

BURNS MEDONNELL.

Spark Spread

Initial	CHP	Feasibility	Survey
---------	-----	-------------	--------

Facility Information									
Facility Location:					Key Distrib	oution Locati	ion?		
					fle - will distri	buted generation	n in this area		d for planned on upgrades
Facilty Type: (Hospital, U	niversity, Manuf	acturing, e	etc.)						
Overall Facility Square Fo	iotage:			Plant Area !	Square Foo	otage:			
CHP Feasibility Rating Cr	iteria: (circle a	s applicat	ole)						
		Fa	acility Space	Availability	1				
No Free Space			Some Fr	ee Space		Very	Open (>10	k ft2 for	large CHP
1	2			3		4		5	
Personal Joseph and Joseph and			Existing Equi			Bandul	an Banda an		10
Recently installed (< 5 yrs)			Some Old	Equipment		Ready In	or Replace	ment (>	30 915)
1 2	3	4	5	6	7	8	9	~	10
			eating Load	Fluctuation	-				
Highly Variable	Daily Load			1000000000000		Variation		Nearl	v Constan
1	2	5	1	3		4		5	1
			ooling Load	Fluctuation	VI.				
Highly Variable	Daily Load	d Swings			Seasona	Variation		Nearl	y Constan
<									
1	2			3		4		5	
Makk, Madakia	Della Long		lectric Load	Fluctuation		Variation			. Franklin
Highly Variable	Daily Load	a Swings			seasona	vanation		Near	y Constan
1	2	(a		3		4		5	
	*	-	Retail Elec			-		2.	
\$0.04 / kWh	\$0.06 /	kWh	\$0.08 / kWh		\$0.10	\$0.10 / kWh		S	0.12 / kW
								-	
1	2	<u> </u>		3	4			5	•
10 K. C.			Retail Gas Rate						
\$12.00 / MMBTU	\$10.00/1	MMBTU	\$8.00 /	MMBTU	\$6.00 / MMBTU			\$4.00	/ MMBTU
								$ \rightarrow $	•
1 2	3	4	5	6	7	8	9	- 17	10
		A		al Gas Usag					23
10,000 MMBTU (10,000 kib	is steam)		500,000	MMBTU	1	0,000,000 MN	NBTO (10,0	300,000	ibs steam
× 1				2					
*		Ann	ual Electrica	Energy Us	300			2	
5,000,000 kWh (Avg 500 kV	CV.			Vh (Avg 25 M	-	5	00,000,000	kwh (A	ve 50 MW
				t ig at a		-		-	
1			3	2				3	
		An	nual Hours	of Operatio	n				
1000 hrs.	3	3500 hrs.				7000 hrs.			8760 hrs
	ومعرب ومستوجع الكافع								•
1 2	3	4	5	6	7	8	9		10
Survey Score:						od, 30 - 40:			
Spark Spread:				< 1	0: Not Go	od, 10 - 15:	Some Pot	ential, >	15: Grea

KEY CHALLENGES

- Regulatory Hurdles
 - Municipal Utility, Regulated Utility, IPP, IOE, etc.
 - Rate Based, PPA, Capital Commitment, etc
- O&M Strategy
 - Operational Staff
 - Maintenance Staff
- The Deal
 - Point of demarcation
 - Performance and Uptime Guarantees
 - Rate Structure
 - Fixed vs variable costs
 - Contribution to Capital
 - Duration

CASE STUDY

South Energy Center

GRU

UFHealth

APPLICATION OVERVIEW

- New medical campus focused on treatment of cancer
- Multiphase construction
- Energy services outsourced as design / build / own / operate / maintain

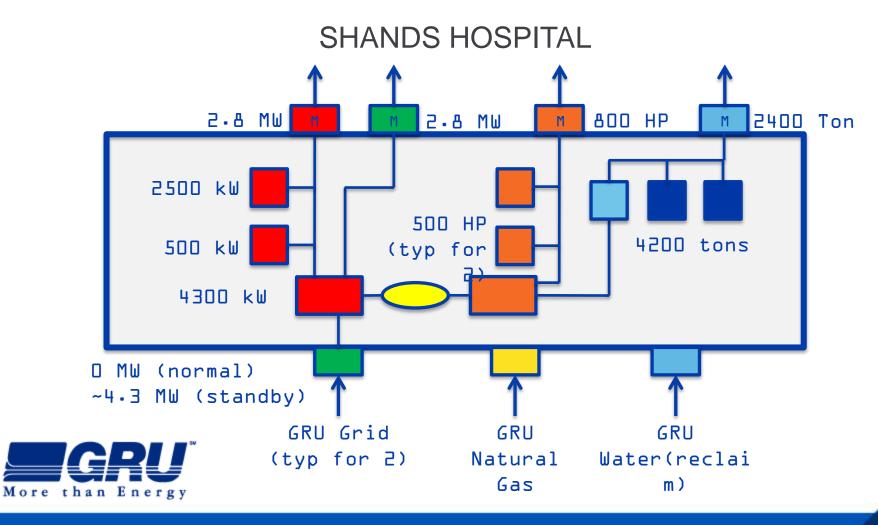
OVERVIEW

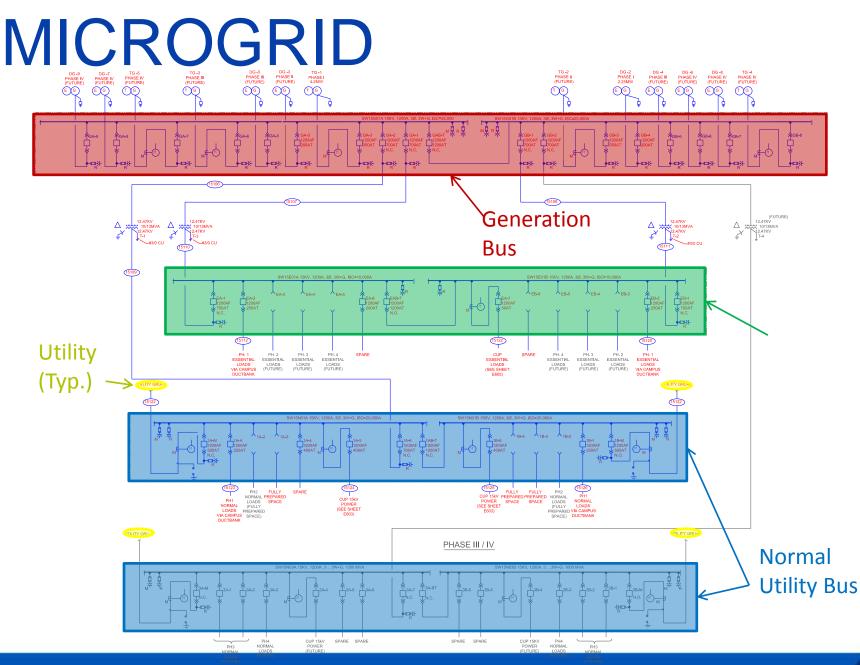
SHANDS CANCER HOSPITAL

- University of Florida
- Phase 1
 - 500,000 SF
 - 200 bed
 - Level 1 trauma
- ► 35 Year Plan
 - 3,000,000 SF
 - 1200 bed
 - 15 MW
 - 16,000 tons

TECHNICAL OVERVIEW

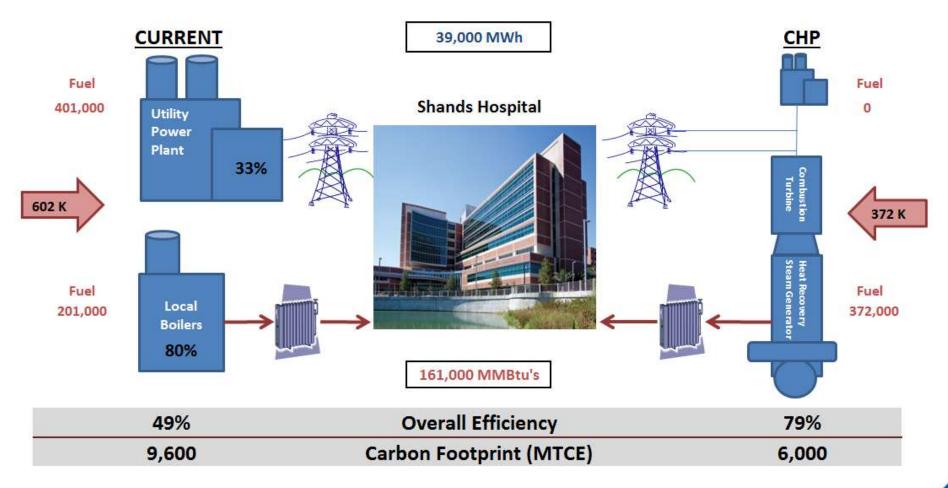
GRU SOUTH ENERGY CENTER


- 4.3 MW recuperated combustion turbine
- 40 klbs/hr heat recovery steam generator
- Back-up boiler
- 4,200 Tons of cooling
- ► 2.25 MW emergency diesel
- 500 kW black start diesel



SOUTH ENERGY CENTER

GRU ENERGY CENTER BENEFITS


- Partnership between hospital and municipal utility
- Combined heat & power for efficient generation of utilities
- Multiple levels of redundancy
- Fully load diesel generators during testing
- CHP yields 80% efficient operation
- Hospital achieved LEED Gold certification thanks to Energy Center
- Concentrate on core business

SEC EFFICIENCY

OVERCOMING CHALLENGES

- Regulatory Hurdles
- O&M Structure
- The Deal

WHATS NEXT AT THE SEC?

QUESTIONS & ANSWERS

BURNSMCD.COM/ONSITE

CONTA CTS

KURT KOENIG, PE Burns & McDonnell Associate, Senior Project Manager P 919-900-1864 E kkoenig@burnsmcd.com

CHUCK HEIDT, PE Gainesville Regional Utilities Project Manager P 352-393-1735 E heidtcs@gru.com