**De-Carbonizing the Campus:** Planning, Tools & Technologies

## CampusEnergy2023

#### February 27 – March 2, 2023



## Decarbonization of an Industrial Campus

Track 5A3 Decarbonizing with District Energy / Escondido

Shane Helm, PE | Manager - Mechanical Engineering | Precis Marc Sano, PE, CEM | Mechanical Engineer | Precis

De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023





# Help client achieve 30% carbon reduction by 2030 and net-zero emissions by 2050.

CO2

11111

CO2

CO

Precis evaluated four of the top 15 carbon-emitting sites to develop a list of recommendations to reduce carbon footprint.

De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023





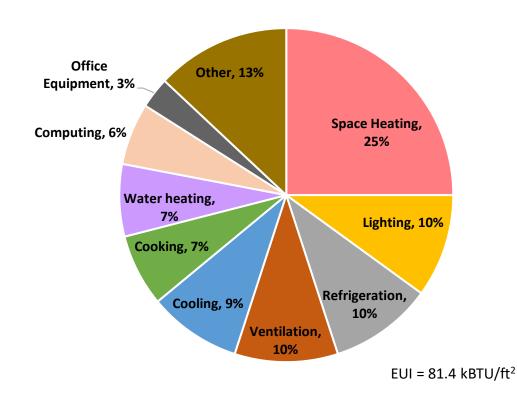
## Case Study / Project – Pharmaceutical Client

### • Eastern United States

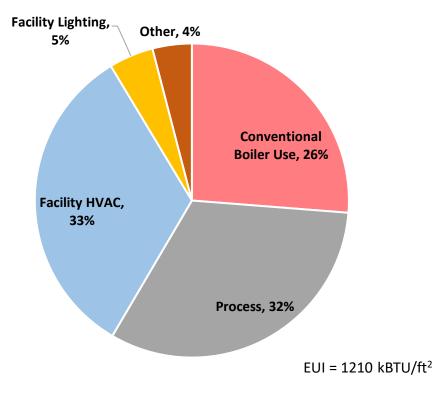
- Contract development and manufacturing organization (CDMO)
- Campus consists of 8 main buildings, 1.5 million s.f. interior space
  - Cleanrooms
  - Laboratories
- Major Systems:
  - Two chilled water plants
  - Central steam boiler plant

- Office
- Warehouse
- Central compressed air plant
- Building HVAC Systems






orecis




## Project Process

2012 CBECS Energy Consumption by End Use - Commercial



#### 2018 MECS Energy Consumption by End Use -Pharmaceuticals & Medicines



De-Carbonizing the Campus: Planning, Tools & Technologies
CampusEnergy2023
February 27 – March 2, 2023

Gaylord Texan Resort & Convention Center | Grapevine, Texas



| ECO Number | Energy Conservation Opportunities (ECO) – Recommendations Pursued                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-1        | Electrify high-pressure steam system.                                                                                                                                                      |
| S-2        | Increase condensate return percentage on high pressure steam system.                                                                                                                       |
| S-5        | Eliminate steam leaks.                                                                                                                                                                     |
| HW-17      | Provide central heating hot water system in lieu of utilizing central steam system for reheat.<br>Utilize heat pump chillers in "side car" arrangement with existing chilled water system. |
| HW-21      | Convert B1 HHW skid to variable speed with a resetting static pressure setpoint.                                                                                                           |
| CHW-25     | Integrated variable primary/variable secondary pumping arrangement for B4 CHW system.                                                                                                      |
| CHW-27     | Reset B4 secondary CHW system static pressure setpoint based on outside air temperature.                                                                                                   |
| CHW-28     | Reset B4 supply chilled water temperature based on outdoor air temperature.                                                                                                                |
| CHW-30     | Fix low delta T issues on secondary CHW systems in B4.                                                                                                                                     |
| CHW-33     | Reset B16 CDWS setpoint.                                                                                                                                                                   |
| CHW-40     | Repair or replace the cooling tower wet-bulb temperature transmitter to allow B4 cooling tower fans to control to appropriate set point.                                                   |
| CA-41      | Utilize dew point demand switching option on existing B4 compressed air dryers.                                                                                                            |
| CA-43      | Eliminate air leaks on B4 and B16 compressed air systems.                                                                                                                                  |
| HVAC-46    | Challenge air change requirements in classified spaces.                                                                                                                                    |
| HVAC-47    | Replace fans with fan walls.                                                                                                                                                               |
| HVAC-49    | Install VFDs to allow modulation of supply/return/exhaust fan speed instead of using IGV.                                                                                                  |
| HVAC-66    | Convert kitchen exhaust hoods to VAV with Melink or Captiveaire controls.                                                                                                                  |
| P-82       | Reduce hot WFI sent to drain during use cycle through controls (i.e. timer).                                                                                                               |
| R-85       | Install solar array over parking lot space.                                                                                                                                                |
| R-86       | Utilize energy storage to reduce peak usage and maximize capabilities of renewable energy.                                                                                                 |
| O-91       | Utilize existing cogeneration system year-round as opposed to only for peak loading.                                                                                                       |
| O-92       | Install plug load controllers to turn off desktop electronics on a time-based schedule.                                                                                                    |







| ECO Number | Energy Conservation Opportunity (ECO) – Recommendations Not Pursued                   |
|------------|---------------------------------------------------------------------------------------|
| S-4        | Implement automatic steam trap monitoring.                                            |
| S-7        | Utilize parallel positioning controls for new boiler O2 control.                      |
| S-8        | Provide new boilers with VFD-driven combustion air fans.                              |
| S-10       | Recover flash steam from deaerator for space heating.                                 |
| CHW-29     | Provide a CHW booster pump for B7 to reduce loop pressure.                            |
| HVAC-48    | Replace filters with high efficiency HEPA filter media.                               |
| HVAC-67    | Convert AHU2-21 from hot deck/cold deck to VAV.                                       |
| HVAC-69    | Replace failed terminal units on B16 AHUs to allow system to operate as a VAV system. |
| HVAC-75    | Challenge data center temperature requirements.                                       |
| P-78       | Utilize vapor compression still instead of multi-effect still.                        |
| L-83       | Utilize photocells to optimize use of daylighting.                                    |
| R-87       | Evacuated Tube Solar Collectors.                                                      |







## Case Study/Project Challenges

- Scale of electrification projects required major service upgrades.
- Simple payback periods were not attractive.
- Site growth worked counter to decarbonization goals.
- Focus on reliability increased implementation costs.
- Utility carbon generation rates were estimated.
- Unknown capabilities of future technologies.



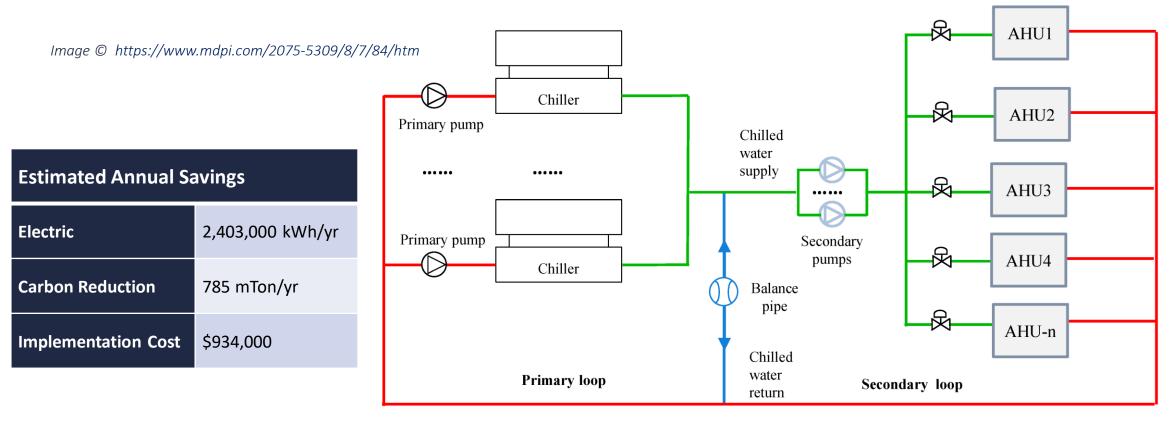




Central heating hot water (HHW) system with watersource heat pumps.

#### Estimated Annual Savings

| Electric            | -10,841,000 kWh/yr |
|---------------------|--------------------|
| Natural Gas         | 2,370,000 therm/yr |
| Carbon Reduction    | 9,040 mTon/yr      |
| Implementation Cost | \$41,800,000       |


Image © York by Johnson Controls







## *Chiller pumping arrangement modification.*



De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023

Gaylord Texan Resort & Convention Center | Grapevine, Texas



### *Recommendation: Chiller replacement.*

#### **Estimated Annual Savings**

| Electric            | 2,810,000 kWh/yr |
|---------------------|------------------|
| Carbon Reduction    | 915 mTon/yr      |
| Implementation Cost | \$5,200,000      |

Image © Adobe









#### Steam boiler electrification.

| Estimated Annual Savings |                     |  |
|--------------------------|---------------------|--|
| Electric                 | -125,485,000 kWh/yr |  |
| Natural Gas              | 4,805,000 therm/yr  |  |
| Carbon Reduction         | -15,390 mTon/yr     |  |
| Implementation Cost      | \$38,400,000        |  |

Image © Precision Boilers





Gaylord Texan Resort & Convention Center I Grapevine, Texas



Recommendation: Steam condensate optimization including steam traps and condensate pump repairs.

| Estimated Annual Savings |                  |  |
|--------------------------|------------------|--|
| Natural Gas              | 131,000 therm/yr |  |
| Carbon Reduction         | 695 mTon/yr      |  |
| Implementation Cost      | \$665,000        |  |



De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023





### Recommendation: Cogeneration system rehabilitation.

#### **Estimated Annual Savings**

| Electric            | 31,219,000 kWh/yr   |
|---------------------|---------------------|
| Natural Gas         | -1,703,000 therm/yr |
| Carbon Reduction    | 1,130.0 mTon/yr     |
| Implementation Cost | \$7,000,000         |





Images © Precis







#### Air-handling unit primary-secondary conversion.

#### **Estimated Annual Savings**

| Electric            | 256,000 kWh/yr  |
|---------------------|-----------------|
| Natural Gas         | 56,284 therm/yr |
| Carbon Reduction    | 380 mTon/yr     |
| Implementation Cost | \$1,280,000     |

Image © Adobe



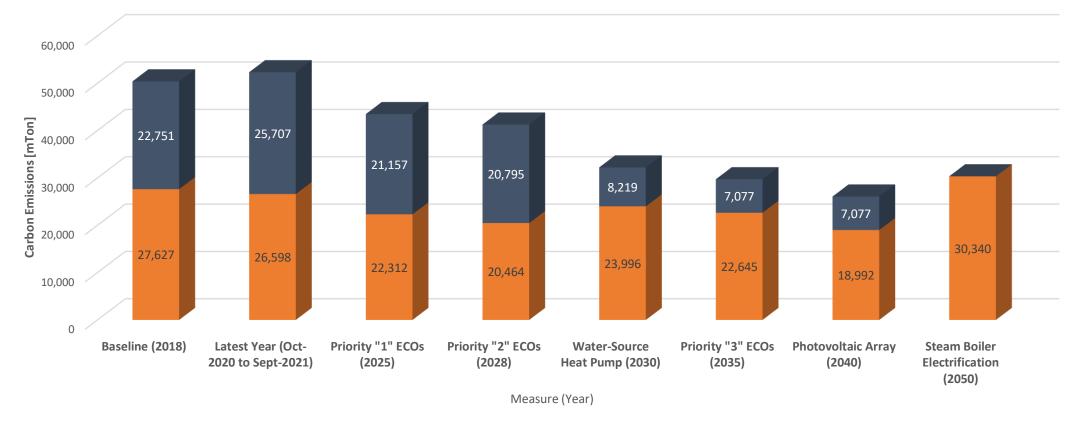






#### **Recommendation:** Controls optimizations.

Image © Adobe




Gaylord Texan Resort & Convention Center | Grapevine, Texas





## Current Path Forward: Site Carbon Footprint



Electricity Carbon Contribution [mTon]

Natural Gas Carbon Contribution [mTon]







### Lessons Learned

- Implementation cost and ROI still drive which improvements are selected.
- Focus on measures that provide additional benefits (e.g., maintenance reduction, reliability improvement, etc.) in addition to a carbon reduction.
- Access to BAS is critical to understanding actual system operation.
- Be targeted in data gathering.







## Questions?





## Thank You!

## precis

engineering + architecture Shane Helm, PE Manager - Mechanical Engineering <u>shelm@precisengineering.com</u>

Marc Sano, PE, CEM Mechanical Engineer msano@precisengineering.com



