Load Management Systems Critical Equipment for Successful CHP Projects

Presented by

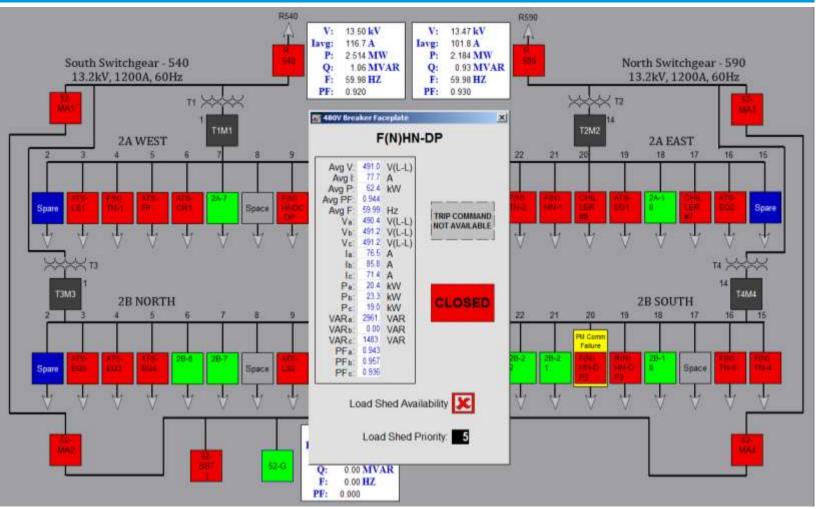
CHA Consulting, Inc.

Saqib Khattak, P.Eng, M.Eng

Section Manager- High Voltage Electrical Group

Introduction

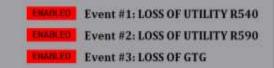
- For successful CHP Projects LMS plays a very important role
- Key LMS features are Loadshedding, local and remote HMIs for better plant operations,
 Historian, Sequence of events recorder
- In a CHP design it is important to have bumpless transfers between the utility and generation and where utility permits close transitioning between buses.
- Successful islanding means upon utility outage the CHP unit survives load swings and stays
 on line without shutting out the entire facility.
- Integration into the plant existing system of any platform for example Siemens, delta V, Allan Bradley etc.



The following control are available through the HMI:

- Import / export control
- Emergency load shedding
- Under frequency load shedding
- Manually initiated automatic synchronization
- Automatic bus transfer
- Distribution system monitoring

Overview


The following control are available through the HMI:

- Tap changer and protective relay control
- Spinning reserve calculations
- Topology management
- Communications
- General display functionality
- Alarm logging

Overview

Sequence of Events

Latest Event	Event Description: Loss of R590 Shed Event Cause: 734-2 Relay Trouble				
M D Y 2014 H M S uS 02 34 27 040330	Total Actual Load Shed: 0.400 MW Total Facility Use: 4.800 MW Total Import: 1.800 MW PM Total Facility Generation: 3.000 MW				
2A-3 ATS-LS1:	5.0 kW	2B-3 ATS-EQ5:	116.0 kW		
2A-4 F(N)TN-1:	2.0 kW	28-4 ATS-EQ3:	14.0 kW		
2A-5 ATS-FP:	3:0: kW	2B-6 ATS-EQ4:	15.0 kW		
2A-6 ATS-CR1:	4.0 kW	28-9 ATS-LS2:	11.0 kW		
2A-9 F(N)HNDC-DP:	12.0 kW	2B-10 ATS-CR3:	13.0 kW		
2A-10 ATS-CR2:	24.0 kW	2B-15 F(N)TN-4:	18.0 kW		
2A-13 F(N)HN-DP:	1 0 kW	2B-16 F(N)TN-5:	19.0 kW		
2A-16 ATS-EQ2:	8.0 kW	28-19 R(N)HN-DP3:	17,0 kW		
2A-17 CHILLER #7:	9.0 kW	2B-20 F(N)HN-DP2:	21.0 kW		
2A-19 ATS-EQ1:	60 KW	2B-23 F(N)TN-6:	20.0 kW		
2A-20 CHILLER #8:	23.0 kW				
2A-21 F(N)HN-1;	7.0 kVV				
2A-22 F(N)TN-2:	10.0 kW				
2A-23 CHILLER #9:	22.0 kW				

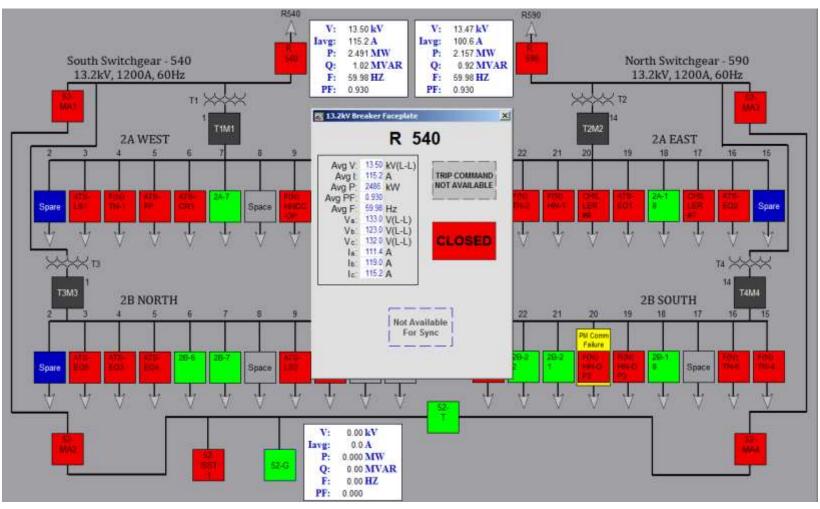
Previous Eve		Event Description: Loss of R590 Shed Event Cause: 734-2 Relay Trouble			
M D Y 03 / 27 / 2014 H M S uS 02 34 21 : 040366	То	ual Load Shed: 0.400 tal Facility Use: 4.800 Total Import: 1.800 lity Generation: 3.000	MW		
2A-3 ATS-LS1:	5.0 kW	2B-3 ATS-EQ5:	16.0:kW		
2A-4 F(N)TN-1:	2.0 kW	28-4 ATS-EQ3:	14.0 kW		
2A-5 ATS-FP:	3.0 kW	2B-6 ATS-EQ4:	15.0 kW		
2A-6 ATS-CR1:	4.0 kW	2B-9 ATS-L 52:	11.0 kW		
2A-9 F(N)HNDC-DP:	12.0 kW	28-10 ATS-CR3:	13.0 kW		
2A-10 ATS-CR2:	24.0 kW	28-15 F(N)TN-4:	18.0 kW		
2A-13 F(N)HN-DP:	1.0 kW	2B-16 F(N)TN-5:	19.0 kW		
ZA-16 ATS-EQ2:	8.0 kW	2B-19 R(N)HN-DP3:	17.0 kW		
2A-17 CHILLER #7:	9.0 kW	28-20 F(N)HN-DP2:	21.0 kW		
2A-19 ATS-EQ1:	6.0 kW	2B-23 F(N)TN-6:	20.0 kW		
2A-20 CHILLER #8:	23.0 kW				
2A-21 F(N)HN-1:	7.0 kW				
2A-22 F(N)TN-2:	10.0 kW				
2A-23 CHILLER #9:	22.0 kW				


Communications

- All the protective relays and Metering devices are connected to the LMS via Ethernet switch
- EtherNet/IP is used for communication between the LMS monitoring controller, local HMI, Generator control system, and the remote I/O rack.
- The LMS system communicates to various kinds of power meters over Modbus RS485. to report apparent power, active power, reactive power, power factor, voltages, currents, and frequencies
- Modbus is an open Master/Slave application protocol that can be used on several different physical layers. Modbus-TCP means that the Modbus protocol is used on top of Ethernet-TCP/IP. The LMS communicates to modern SEL/GE etc. devices through this protocol.
- The ControlNet network allows the monitoring and load shed processors to communicate with each other

Typical System Architecture

Synchronization


- Synchronizer can be a SEL 700GT or a CGCM (Combination Generator Control Module)
- One synchronizer can synchronize multiple breakers.
- Synchronization of multiple breakers can be achieved via drive relays and feed the synchronizer with the PTs associated to the synch. breaker.
- Sync Voltage High/ Low Limit (1 % Typical)

- Frequency Match Error Limit (+/- .04Hz Typical)
- Sync Frequency High/ Low Limit (.2 Hz/0.02Hz Typical)
- Timed Delay (5 Seconds Typical)
- Sync Phase High/ Low Limit (+5 Deg./-5 Deg. Typical)
- Phase Match Error Rate of Change Limit (1 Degree per second Typical)

Synchronization

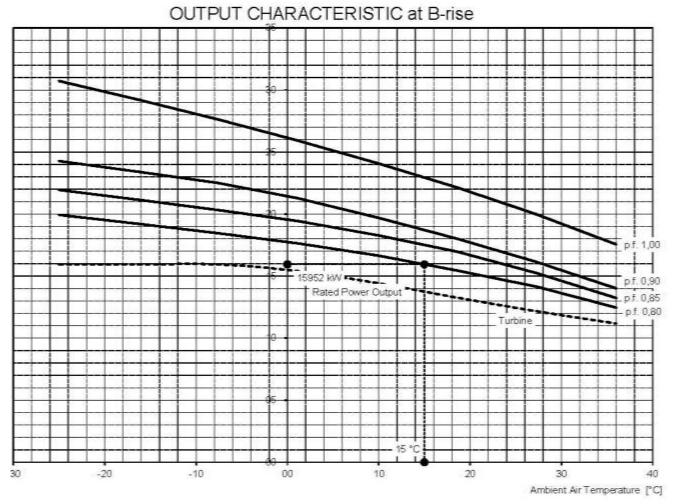
Loadshed

- For Loadshed all the feeder breaker metering data is required.
- Loadshed happens once the facility is running in islanded operation.
- Loadshed can be frequency based or capacity based.
- The LMS will take into consideration the distribution topology so that loads that have been shed do not affect other loads on its partnered bus.

- The system topology allows the LMS to know the bus and electrical load distribution connection states.
- Various breaker statuses are monitored to determine the connection state of each load and bus.
- Loadshedding can be prioritized based on operator's selectivity and operational requirements.
- During a load shed event the LMS reacts within 38 milliseconds to shed as many loads needed to retain the configured amount of spinning reserve.

Loadshed Management

Load Shed Management								
		DISABLED Load Shed Master						
Device	Enable/ Load kW Priority Disable		Device	Load kW Priority	Enable/ Available			
F(N)HN-1	76.40 1 EXAME	TWO IS NOT	F(N)HN-DP2	0.00 21	EMARLED X			
CHILLER #7	2.59 2 DISABLE	X	CHILLER #9	313.04 22	ENABLES X			
ATS-LS2	35.86 3 ENABLE	a X	CHILLER #8	1.35 23	EMBLED X			
ATS-EQ5	0.00 4 ERABE	X	ATS-CR2	37.14 24	X REPORTS			
F(N)HN-DP	64.87 5 ENABLE	M X	2A-7	0.00 25	EMABLED X			
28-18	0.00 6 DISABLE	-	28-6	0.00 26	X Market			
ATS-EQ3	143.55 7 ENAMED	a X	2B-7	0.00 27	ENABLED X			
F(N)TN-1	16.91 8 16.91	X	2A-18	0.00 28	ENABLED X			
ATS-EQ4	0.00	M X	2B-22	0.00 29	ENABLED			
ATS-FP	0.00 10	X	2B-21	0.00 30	EMARKED X			
ATS-CR1	45.80 11 ENAME	X	480_Spare_11	0.00 31	CHARLED X			
ATS-LS1	23.40 12	×	480_Spare_12	0.00 32	ENAMED X			
F(N)TN-2	15.84 13 EMARCE	E X	480_Spare_13	0.00 33	EMBER X			
ATS-EQ2	111.11 14	I X	480_Spare_14	0.00 34	ENABLED X			
ATS-EQ1	278.34 15 ENAPLE	E X	480_Spare_15	0.00 35	EMARLED X			
F(N)HNDC-DP	44.37 16 ENAME	I X	480_Spare_16	0.00 36	EMBED! X			
ATS-CR3	51.36 17 EMBLE	X	480_Spare_17	0.00 37	X MARKET			
R(N)HN-DP3	0.00 18 ENABLES	N X	480_Spare_18	0.00 38	EMBED X			
F(N)TN-4	0.00 19 ENABLE	a X	480_Spare_19	0.00 39	ENAMED X			
F(N)TN-6	7.52 20 ENABLE	M X	F(N)TN-5	8.66 40	EMBED X			

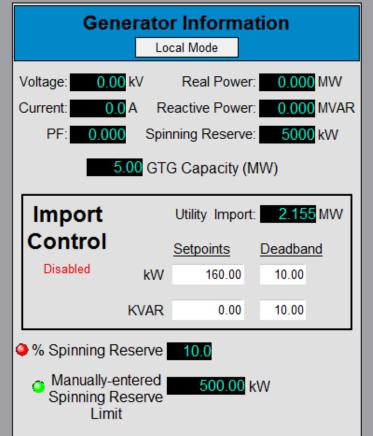


Spinning Reserve

Load Shed MW =

(Loss of critical source MW + GEN Power Generated) – (GEN Capacity -Spinning Reserve)

Import Export Control


- The LMS controls the amount of import power from the utility. This utility import power is controlled by maintaining the power output of the Generator.
- The LMS compares the import power of the utility breaker with the configured deadband and will raise/lower the frequency and voltage of the Generator to regulate the import power.
- Raise and lower pulses will continue until the import power is within the specified deadband.

- In order for the raise and lower signals to control the genset, the genset must be in "remote" mode.
- Import control will not allow a kW setpoint to be less than 100 kW.
- The operator has the ability to select between import control and base-load control from the HMI. Base-load control will allow the operator to control the GTG at a constant load output

Import Export Control Screen

Conclusion

- LMS helps in the import/export control of Power between the grid and CHP facility.
- LMS helps in successfully islanding the Cogeneration facility by accurately calculating loads vs generation and decides if loadshedding is required or not.
- Calculation of available generation in comparison to facility using the generator capability curve, thus making the system very dynamic.
- Integration of Utility RTU and making the points available to be communicated to the RTU
- Serves as a local SCADA system for the operators
- One stop shop where all the information is available for the operators to make decisions and control critical equipment
- No worries of Arc Flash factor, since the operator is able to operate breakers at the LMS HMI located remotely.

Thank You.

For more information, please contact:

Saqib Khattak, P.Eng, M.Eng

Section Manager – High Voltage Electrical Group

p. 289-273-7179

e. skhattak@chacompanies.com

