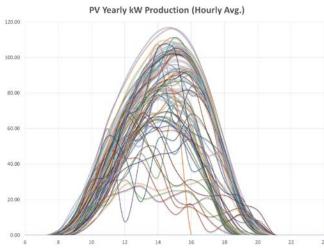
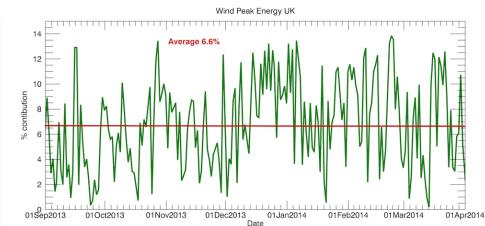
Model-Based Online Power Management Solution A Key Element to any Microgrid Program

Mohammad Zadeh, Ph.D., P.E., SMIEEE Principal Electrical Engineer, ETAP, Irvine, CA

Content

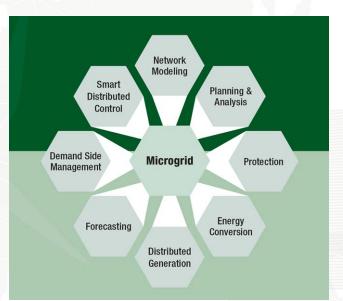
- Why Model-Based Solution for Microgrid
 - Renewable resources are not dependable
 - Challenges of microgrid operation in islanded mode
- Models of Microgrid Elements
- Microgrid Central Controller (MGCC)
- Online Predictive Simulation Analysis
- Advanced Predictive Simulation Applications
- Case Studies




Why Model-Based Solution?

Renewable resources are not dependable

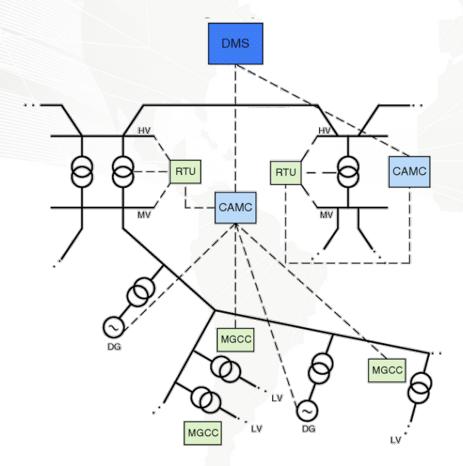
- Active power depending on weather
- May not provide spinning reserve
- May not provide reactive power support


Why Model-Based Solution?

- Challenges of Operation in Islanded Mode
 - Hard to maintain voltage and frequency stability
 - Large imbalances between load and generation
 - Strong interaction between controllers of energy resources
 - Use of different generation technologies
 - -Low power quality
 - Lack of sufficient reserve margin
 - -Smaller short circuit current

Why Model-Based Solution?

- To effectively and optimally address microgrid challenges
 - Predict microgrid response to any change
 - Predict future state of microgrid
- Utilize model-driven predictive solution to
 - simulate
 - optimize
 - control
 - protect
 - and automate


Microgrid Central Controller (MGCC)

- Combines system modeling & analysis with real-time data
- Predicts outcome of various contingencies, system changes, unplanned failures, etc.
- Provides recommendations and automatically takes corrective action

Control Architecture for Multi-Microgrids

• Supports dynamic configuration and Multi-Microgrid Control & Management

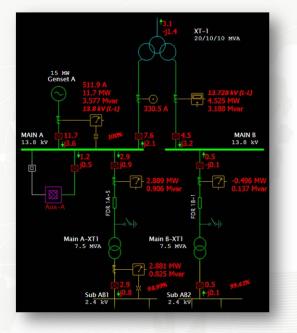
DMS

- Distribution Management System
- HMI Yes
- Integrated Control Yes

CAMC

- Central Autonomous Microgrid Controller
- HMI Optional
- Coordinated Control Yes

MGCC


- Microgrid Central Controller
- HMI Yes
- Local Control Yes

Model Validation & Tuning

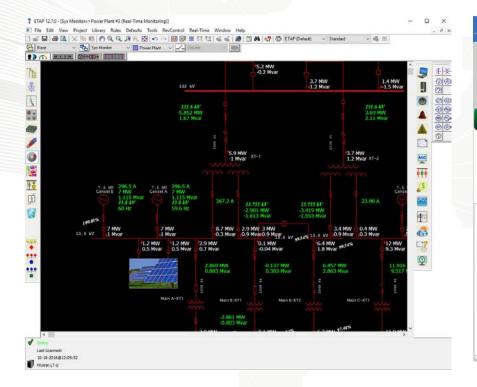
- Acquire online data
- Tune load, generation & configuration
- Perform state estimation

On-Line Data at	06-15-2015	15:27:58							
ID	Туре	Variable	Meter	SLE	Deviation	Set-Pt	OPC	RDC	BDD
MM35	Motor Load	k₩	62457	62405	0.083	0	Good		Good
MM35	Motor Load	kvar	38707	38702	0.013	0	Good		Good
MM35	Motor Load	kV	131.905	132.679	-0.587	0	Good		Good
MM36	Motor Load	k₩	70772	70720	0.073	0	Good		Good
MM36	Motor Load	kvar	43860	43855	0.012	0	Good		Good
MM36	Motor Load	kV	131.905	132.679	-0.587	0	Good		Good
MM43	Branch	k₩	111856	111304	0.493	0	Good		Good
MM43	Branch	kvar	61601	60753	1.377	0	Good		Good
MM43	Branch	kV	218.496	219.826	-0.609	0	Good		Good
MM44	Branch	k₩	120217	119665	0.459	0	Good		Good
MM44	Branch	kvar	43639	42784	1.959	0	Good		Good
MM44	Branch	kV	218.496	219.826	-0.609	0	Good		Good
MM45	Branch	k₩	-116037	-115485	0.476	100000	Good		Good
MM45	Branch	kvar	-52620	-51770	1.615	0	Good		Good
MM45	Branch	kV	218 496	219.827	-0.609	0	Good		Good
isplay Selection									
ID Filter	🔽 Amp	Volt	🔽 kW 🛛 🔽	🛛 kvar 🛛 📝 P	F 🔽 CB (Diff.) 📃 C	B (Same)	V OPC Bad	📝 OPC Go
isplay Options		Deviation	Levels						
Show % Deviation	Unit		% Minimum	% Warning	% Alarm				
SHOW & Deviation	kVA 💌	Vol	age 0	0.5	1				
Show Delta Difference	KVA 🔻								
			% Minimum	% Warning	% Alarm	Min∆ kW/k	var		
Only display tags used by !	SLE	Po	wer 0	10	15	0			

Modbus, DNP3, OPC, IEC 61850 MMS, IEC 61850 Buffered Report, ICCP Gateway

Online Predictive Simulation Analysis

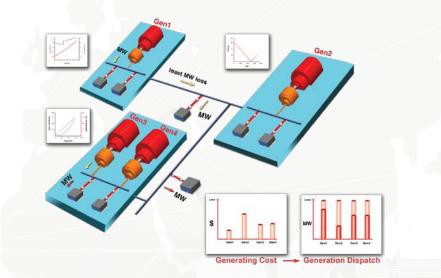
- Simulate circuit breaker operation
- Identify potential operating problems
- Simulate motor starting & load change
- Predict operating time of protective devices
- Predict system response based on operator actions
- Perform "what if" operating scenarios
- Simulate real-time & archived data
- Operator assistance & training

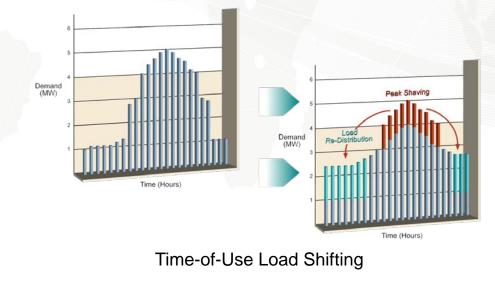


Advanced Predictive Simulation Applications

- Intelligent monitoring
- Sequence of events playback
- Power management applications
- Economic dispatch, unit commitment & generation control
- Load management
- Volt-var optimization
- Intelligent load shedding
- Microgrid real time simulation

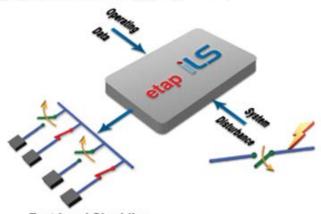
Intelligent Monitoring



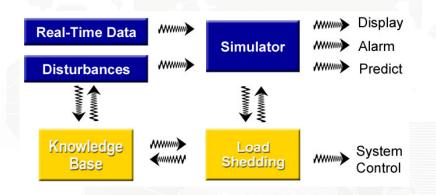


Economic Dispatch & Load Management

- Minimize fuel costs
- Optimal energy costs
- Fast solution
- Robust algorithms
- Demand-side management
- Time-of-use load shifting
- Intelligent load management


Volt/Var Optimization

- Maximize voltage & flow security indices
- Minimal reactive power losses & electrical demand via CVR
- Optimizes power factor for the entire microgrid
- Based on time-of-day, static load profile, or averaged load
- Control generator and inverter reactive power setpoints
- Control capacitor bank or Static Var Compensator (SVC) setpoints
- Adjust switched capacitors within the specified limits
- Control voltage regulators (transformer tap positions) within the specified limits

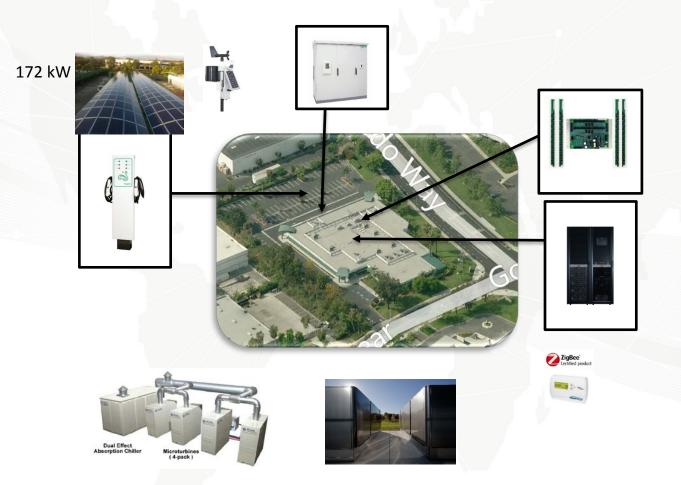


Intelligent Load Shedding

- Optimal load preservation & minimum load shedding
- Fast response time & reliable operation <10 ms
- Proactive contingency analysis
- Steady-state & transient response

Fast Load Shedding Optimal Load Preservation Overload Curtailment

- Confirm load shedding actions
- Simulate ILS recommendations
- Integrated stability knowledge base



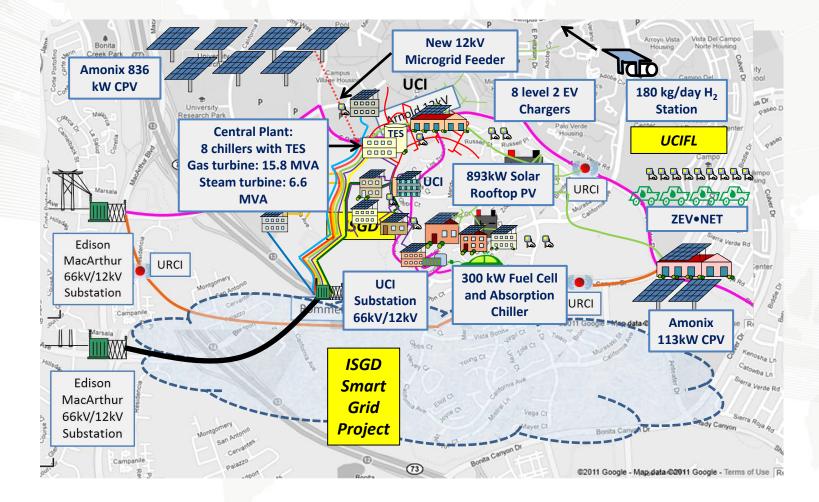
Key Microgrid Projects

- ETAP Corporate Office, Irvine, USA
- University of California, Irvine, USA
- Fukushima Renewable Energy Institute
- Over 20 non-DER Microgrid Projects

ETAP Corporate Office Microgrid Equipment

ETAP Corporate Office Applications & Purpose

- Advanced Monitoring Improve system visibility
- Energy Accounting Compare utility bill against measured values
- Automatic Generation Dispatch Using mix of utility, PV, battery and/or fuel cell
- Automatic Demand Management
- Remote control of equipment
- Verify & Validate ETAP (simulated vs. actual)
- Multiple vendors participating and supplying equipment for this real-world microgrid



University of California Irvine Campus (UCI) - Microgrid

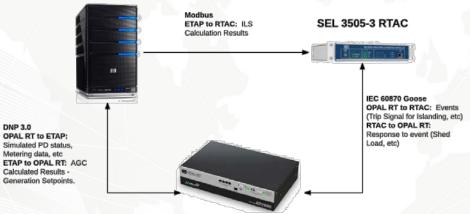
UCI Microgrid

UCI Requirements

- Where and how do we plan additional renewable assets?
- How do we measure kW and kvar available capacity, manage load growth while maintaining system reliability?
- How can we maximize generation usage and mix?
- Can we safely maintain critical load given mix of generation under islanded mode
- How do we decide the optimal switching between multiple feeders to balance feeders and loads?
- Quick and easy to use model validation tools to benchmark the microgrid model for improved decision making and situation awareness
- Demand response for reliability and economics

UCI Requirements

- Include static and dynamic behavior of the microgrid components such as inverters, Co-gens, fuel cells, etc.
- Optimize the overall network not just localized improvements
- Utilize real-time, historical, and forecasted data for optimization routines
- Provides an easy to use operator interface
- Complete system situational awareness using limited metering points
- Integrate with existing smart grid circuits
 - Optimize network under grid connected mode
 - Ensure critical load is running under islanded mode


Microgrid Controller Suite

- PowerStation Management System (PSMS)
 - Monitor and Control Real-Time Environment
- Intelligent Load Shedding (ILS)
 - Quickly respond to changing events in the system (Islanding, loss of generation)
- Automatic Generation Control (AGC)
 - Adjust asset operating conditions in Real-Time to optimize on pre-defined objectives
 - Minimize Cost, Losses

Test Environment

ETAP Real-Time Server

OPAL RT

Operational Environment

- Offline Simulation
 - Unbalanced Load Flow, Time Domain Load Flow
 - Transient Stability
 - Optimal Power Flow
- PowerStation Management System
 - Real-Time Data collection from MelRok hardware via BacNET protocol
 - State and Load Estimation
 - Predictive Simulation
 - Data Archival

Next Step

- Optimization in Real Environment
 - Implementation of Objectives from Test Environment into Operation
 - Implement SCADA Capabilities (Alarming, Emailing, HMIs, Web User Interface)
 - ADMS Modules (Volt-Var Optimization, Switching Optimization, Fault Isolation and Service Restoration, etc)
- Requirements / Obstacles
 - Additional monitoring equipment for higher visibility at key points
 - Additional controllable assets
 - Integration with controllable, renewable assets
 - Integration with process assets (HVAC, etc).
 - Integration with weather monitoring / forecasting system.

Summary

- Model-based solution to enable predictive simulation
- Offer models for conventional and new energy resources
- State estimation & model verification to ensure simulation accuracy
- Load and generation forecast to predict future state & optimize microgrid
- Online monitoring, power management and web applications
- Conventional and advanced applications to perform offline and predictive online simulation
- Microgrid offline and real time simulation
- Several case studies and projects

