CHP and TES: strange bedfellows or a match made in heaven?

John S. Andrepont, President
The Cool Solutions Company

International District Energy Association (IDEA) Annual Conference
Pittsburgh, Pennsylvania – June 25, 2019
Outline

• CHP & TES: Two ways to similar benefits for District Energy
• But how often are they used together?
 – Numerous examples.
• Why do both?
 – Synergies (illustrated by brief case studies)
• Capturing Capital Savings
 – How & When
• Conclusions and Recommendations
Introduction

• District Energy systems and their customers draw value from:
 – Redundancy, Reliability, Resilience
 – Operational Flexibility
 – Environmental Responsibility
 – Management of Peak Electric Loads
 – Economics

• Combined Heat & Power (CHP) and Thermal Energy Storage (TES) can, and generally do, each provide all these benefits.

But if one is implemented, does that reduce the value of the 2nd?
Combined Use of CHP and TES

• In fact, these two technologies can complement one another, adding to the overall value for DE systems and their customers.

• A small study for US DOE (2003) identified 33 CHP installations where TES was also employed.

• Since that study, many others have been identified.

• Examples include applications in industry, but also for:
 – University & College campuses
 – Airports, Military, and other Government facilities
 – Healthcare / Medical / Research facilities
 – District Cooling utility systems
Some University Examples with Both CHP & TES

<table>
<thead>
<tr>
<th>Owner / Operator - Location</th>
<th>CHP Year</th>
<th>CHP (MW)</th>
<th>TES Year</th>
<th>TES Type</th>
<th>TES (ton-hrs)</th>
<th>TES peak shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>California State Polytechnic U - Pomona</td>
<td>1989</td>
<td>0.4</td>
<td>2000</td>
<td>CHW</td>
<td>25,000</td>
<td>3</td>
</tr>
<tr>
<td>California State U - Fullerton</td>
<td>2010</td>
<td>4.6</td>
<td>1993</td>
<td>CHW</td>
<td>37,000</td>
<td>4</td>
</tr>
<tr>
<td>California State U - Long Beach</td>
<td>1987</td>
<td>0.2</td>
<td>19??</td>
<td>Ice</td>
<td>40,000</td>
<td>5</td>
</tr>
<tr>
<td>California State U - Northridge</td>
<td>2001</td>
<td>0.2</td>
<td>1997</td>
<td>CHW</td>
<td>29,000</td>
<td>3</td>
</tr>
<tr>
<td>California State U - San Diego</td>
<td>2003</td>
<td>17.4</td>
<td>1997</td>
<td>CHW</td>
<td>22,000</td>
<td>3</td>
</tr>
<tr>
<td>Cornell U - Ithaca, NY</td>
<td>19??</td>
<td>8.0</td>
<td>1991</td>
<td>CHW</td>
<td>38,000</td>
<td>4</td>
</tr>
<tr>
<td>Harvard U Allston Campus - Boston, MA</td>
<td>2019</td>
<td>2.5</td>
<td>2019</td>
<td>CHW</td>
<td>13,392</td>
<td>3</td>
</tr>
<tr>
<td>New Mexico State U - Las Cruces</td>
<td>1996</td>
<td>4.7</td>
<td>19??</td>
<td>CHW</td>
<td>20,000</td>
<td>2</td>
</tr>
<tr>
<td>North Carolina State U - Raleigh</td>
<td>2012</td>
<td>11.0</td>
<td>2020</td>
<td>CHW</td>
<td>25,000</td>
<td>4</td>
</tr>
<tr>
<td>Stanford U - Palo Alto, CA</td>
<td>1987</td>
<td>49.9</td>
<td>2015</td>
<td>CHW</td>
<td>90,000</td>
<td>12</td>
</tr>
<tr>
<td>Texas A&M U - College Station, TX</td>
<td>1996</td>
<td>50.0</td>
<td>2016</td>
<td>CHW</td>
<td>24,000</td>
<td>5</td>
</tr>
</tbody>
</table>
More University Examples with Both CHP & TES

<table>
<thead>
<tr>
<th>Owner / Operator - Location</th>
<th>CHP Year</th>
<th>CHP (MW)</th>
<th>TES Year</th>
<th>TES Type</th>
<th>TES (ton-hrs)</th>
<th>TES peak shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>U of California - Los Angeles</td>
<td>1994</td>
<td>48.0</td>
<td>2002</td>
<td>CHW</td>
<td>32,000</td>
<td>4</td>
</tr>
<tr>
<td>U of California - San Diego</td>
<td>????</td>
<td>25.6</td>
<td>1994</td>
<td>CHW</td>
<td>35,900</td>
<td>4</td>
</tr>
<tr>
<td>U of Cincinnati - Cincinnati, OH</td>
<td>2004</td>
<td>47.7</td>
<td>‘98+’11</td>
<td>CHW</td>
<td>~52,000</td>
<td>6</td>
</tr>
<tr>
<td>U of Iowa - Iowa City</td>
<td>19??</td>
<td>21.5</td>
<td>19??</td>
<td>CHW</td>
<td>7,000</td>
<td>1</td>
</tr>
<tr>
<td>U of Maryland - College Park</td>
<td>2002</td>
<td>27.3</td>
<td>????</td>
<td>Ice</td>
<td>?,??</td>
<td>?</td>
</tr>
<tr>
<td>U of Michigan - Ann Arbor</td>
<td>1897+??</td>
<td>48.5</td>
<td>1986</td>
<td>CHW</td>
<td>17,000</td>
<td>2</td>
</tr>
<tr>
<td>U of North Carolina - Chapel Hill</td>
<td>1992</td>
<td>28.0</td>
<td>2006</td>
<td>CHW</td>
<td>40,000</td>
<td>4</td>
</tr>
<tr>
<td>U of Texas at Austin</td>
<td>‘??+’09</td>
<td>100.+</td>
<td>‘11+’16</td>
<td>CHW</td>
<td>82,000</td>
<td>8</td>
</tr>
<tr>
<td>U of Utah - Salt Lake City</td>
<td>2008</td>
<td>6.5</td>
<td>2010</td>
<td>CHW</td>
<td>26,000</td>
<td>3</td>
</tr>
<tr>
<td>Utah State U - Logan</td>
<td>2004</td>
<td>4.5</td>
<td>2012</td>
<td>CHW</td>
<td>~15,000</td>
<td>2</td>
</tr>
<tr>
<td>Washington State U - Pullman, WA</td>
<td>1982</td>
<td>2.0</td>
<td>1993</td>
<td>CHW</td>
<td>17,750</td>
<td>2</td>
</tr>
<tr>
<td>Yale U - New Haven, CT</td>
<td>‘98+’10</td>
<td>37.4</td>
<td>19??</td>
<td>CHW</td>
<td>~20,000</td>
<td>2</td>
</tr>
</tbody>
</table>
Other District Examples with Both CHP & TES

<table>
<thead>
<tr>
<th>Owner / Operator - Location</th>
<th>CHP Year</th>
<th>CHP (MW)</th>
<th>TES Year(s)</th>
<th>TES Type</th>
<th>TES (ton-hrs)</th>
<th>TES peak shift (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFW Int’l Airport - Dallas/Ft Worth, TX</td>
<td>2007</td>
<td>110.0</td>
<td>2002</td>
<td>LT Fluid</td>
<td>90,000</td>
<td>21</td>
</tr>
<tr>
<td>LAX Int’l Airport - Los Angeles, CA</td>
<td>1985</td>
<td>17.2</td>
<td>2013</td>
<td>CHW</td>
<td>15,500</td>
<td>3</td>
</tr>
<tr>
<td>Austin Energy / Dell Children’s Hospital, TX</td>
<td>2006</td>
<td>4.6</td>
<td>2005</td>
<td>CHW</td>
<td>8,000</td>
<td>1</td>
</tr>
<tr>
<td>Geisinger Medical Center - Danville, PA</td>
<td>2011</td>
<td>5.0</td>
<td>2009</td>
<td>CHW</td>
<td>8,000</td>
<td>1</td>
</tr>
<tr>
<td>National Institutes of Health - Bethesda, MD</td>
<td>2004</td>
<td>23.0</td>
<td>2018</td>
<td>CHW</td>
<td>47,500</td>
<td>6</td>
</tr>
<tr>
<td>NRG / Univ Med Ctr - Plainsboro, NJ</td>
<td>2011</td>
<td>4.6</td>
<td>2012</td>
<td>CHW</td>
<td>9,850</td>
<td>1</td>
</tr>
<tr>
<td>Thermal Energy Corp. (TECO) - Houston, TX</td>
<td>2010</td>
<td>48.0</td>
<td>2010</td>
<td>CHW</td>
<td>70,000</td>
<td>10</td>
</tr>
<tr>
<td>District Energy St. Paul - St. Paul, MN</td>
<td>2003</td>
<td>25.0</td>
<td>’94+’03</td>
<td>CHW</td>
<td>72,000</td>
<td>8</td>
</tr>
<tr>
<td>The Energy Network - Hartford, CT</td>
<td>1989</td>
<td>3.9</td>
<td>1985</td>
<td>CHW</td>
<td>20,000</td>
<td>2</td>
</tr>
<tr>
<td>Metro Pier & Expo Authority - Chicago, IL</td>
<td>1997</td>
<td>3.3</td>
<td>1994</td>
<td>LT Fluid</td>
<td>123,000</td>
<td>18</td>
</tr>
<tr>
<td>Reedy Creek / Disney - Lake Buena Vista, FL</td>
<td>1988</td>
<td>32.0</td>
<td>1998</td>
<td>CHW</td>
<td>57,000</td>
<td>7</td>
</tr>
<tr>
<td>Shell Developm’t Westhollow - Houston, TX</td>
<td>1988</td>
<td>3.7</td>
<td>1994</td>
<td>CHW</td>
<td>38,500</td>
<td>5</td>
</tr>
<tr>
<td>Trigen-Cinergy (Gen’l Motors) - Lansing, MI</td>
<td>2001</td>
<td>3.6</td>
<td>2001</td>
<td>CHW</td>
<td>36,500</td>
<td>4</td>
</tr>
<tr>
<td>Veolia (Trigen) - Trenton, NJ</td>
<td>1983</td>
<td>12.0</td>
<td>1991</td>
<td>CHW</td>
<td>20,000</td>
<td>2</td>
</tr>
</tbody>
</table>
TES Flattens Load Profiles for CHP

- CHP is expensive; needs high operating hrs/yr to be cost effective.
- Elec power above CHP must be purchased at high $/kW & $/kWh.
- TES “flattens” peak day elec & thermal profiles.
- This allows:
 - use of larger CHP (at lower Cap$/kW),
 - more hrs/yr of fully loaded CHP operation,
 - fewer kWh/yr of peak elec power purchases, and
 - thus, improved economic results for CHP.

Sometimes, CHP is economically justified, when it wouldn’t be w/o TES.
TES Flattens Load Profiles for CHP

A few examples:

- Texas A&M Univ., College Park, TX
 - 24,000 Ton-hrs
 - 50 MW CHP

- Nat’l Inst’s of Health, Bethesda, MD
 - 47,500 Ton-hrs
 - 23 MW CHP

- U of Texas at Austin, Austin, TX
 - 30 + 52,000 Ton-hrs
 - >100 MW CHP

- DFW Int’l Airport, Dallas / Ft Worth, TX
 - 90,000 Ton-hrs
 - 110 MW CHP

Flatter profiles = More hrs/yr of fully loaded CHP = Better CHP economics.
Turbine Inlet Cooling (TIC) of Gas Turbines

• Gas or Combustion Turbine (CT) machines are constant volume.
• High ambient air temps = low air density, mass flow, and power.
• Cooling inlet air with TIC = higher CT power output.
• Various types of TIC:
 – Evaporative cooling: low $; needs water; lmtd cooling & power
 – Chiller-based cooling: much more cooling & power; higher Cap$
 – Chillers with CHW TES (vs Chillers w/o TES):
 • reduced chiller plant size & cost (often saves more than $ of TES)
 • Increased on-peak power; lower Capital $/kW; TES essentially free!
Turbine Inlet Cooling (TIC) of Gas Turbines

A few examples:

Princeton Univ. Princeton, NJ 40,000 Ton-hrs 1 x 14.6 MW CT
TECO Houston, TX 70,000 Ton-hrs 1 x 48 MW CT
Chicago MPEA Chicago, IL 123,000 Ton-hrs 3 x 1.1 MW CTs
Saudi Electricity Company Riyadh, Saudi Arabia 190,000 Ton-hrs 10 x 75 MW CTs

Hot weather CT outputs are increased by 15 to 30 %, at very low Cap$/MW.
Optimizing Value via Maximum Flexibility

Changing, new, or future electric markets can reward flexibility:

- Various “demand charge” and “Time-of-Use (TOU)” rates
- “Interruptible” rates
- “Real-Time Pricing (RTP)” rates
- “Coincident Demand” rates
- “Global Adjustment (GA)” charges, as in Ontario, Canada
- Short “Super On-Peak” periods met by rapid response

Some utilities pay cash incentives for peak load mgmt via TES.
Optimizing Value via Maximum Flexibility

15,000 Tons of electric & non-electric chillers
14.6 MW CT, with TIC recovering 2.5 MW
40,000 Ton-hr LT Fluid TES (32/56 °F) in 2.7 M gallons

Low supply temp enhances capacity of DC network (and CT output via TIC).
Real-time hourly electric prices. Can fully discharge TES in only 4 hours.
On some days, TES cycles **more** than 100% of TES capacity, discharging ~33%
in morning, recharging mid-day, then discharging 100% in late afternoon.

All combined: <2 MW on-peak grid purchase, meets 27 MW campus demand.

In 2012’s Superstorm Sandy, PU was haven/staging point for 1st responders.
Optimizing Value via Maximum Flexibility

TECO - Houston, TX (CHP & TES in 2010)
Serves Texas Med Ctr, world’s largest med complex
120,000 Tons of electric & non-electric chillers
48 MW CT, with TIC recovering 10.4 MW
70,000 Ton-hr CHW TES (40/53 °F) in 8.8 M gallons
Convertible to LT Fluid TES, e.g. for 107,000 Ton-hrs at 32/52 °F
Real-time hourly electric prices. Can fully discharge TES in only 5 hours.
Some nights (w/ excess wind), they are paid ~$0.10/kWh to recharge TES.
Some days (grid peaks), TES saved up to ~$3.00/kWh or ~$25,000 per hour.

Through 2017’s Hurricane Harvey, TECO maintained service to its customers.
Capturing Capital Savings – How & When

Without TES, installed chiller plant capacity must be equal to instantaneous peak load, plus any necessary spare capacity.

But with TES, installed chiller plant capacity need only equal 24-hr peak day average load, plus necessary spare capacity.

Saving in chiller plant CapEx offsets CapEx of TES.

For large-scale CHW TES, this is often a net CapEx saving.

This occurs if TES is used in lieu of some non-TES investment:

1. New Construction
2. Retrofit Expansion
3. Retirement / Replacement of Aging Chiller Plant Equip
Capturing Capital Savings – A Few Examples

<table>
<thead>
<tr>
<th>TES</th>
<th>CHW TES</th>
<th>Savings vs. Non-TES Chiller Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Type</td>
<td>Owner</td>
</tr>
<tr>
<td>retro</td>
<td>Washington St U</td>
<td>17,750</td>
</tr>
<tr>
<td>new</td>
<td>Lisbon Distr Energy</td>
<td>39,800</td>
</tr>
<tr>
<td>retro</td>
<td>U of Alberta</td>
<td>60,000</td>
</tr>
<tr>
<td>new</td>
<td>Chrysler R&D</td>
<td>68,000</td>
</tr>
<tr>
<td>retro</td>
<td>DFW Airport</td>
<td>90,000</td>
</tr>
<tr>
<td>retro</td>
<td>OUCooling district</td>
<td>160,000</td>
</tr>
</tbody>
</table>

Net Capital Savings accrue from downsizing chiller plants, while adding CHW TES during new construction or retro expansions.
Capturing Capital Savings – Case Study

Chrsyler Motors corporate R&D center
Auburn Hills, Michigan (new construction)

- Peak cooling load = ~16,000 Tons
- If no TES, needed chillers = 17,700 Tons
- With TES, only need chillers = 11,400 Tons
- 68,000 ton-hrs of CHW TES (at 43/61 °F CHWS/R temps) in two 3 Mgal tanks
- CHW TES tanks also provide dual-use as emergency fire protection
- TES peak load shift = 7,600 Tons (~5.3 MW electric)
- Annual demand charge savings of over $1 million

And by down-sizing chiller plant by 6,300 Tons (to match avg vs peak load), CHW TES produced an immediate net capital cost saving of $3.6 million.
Conclusions and Recommendations

- CHP and TES each provide similar, important benefits for DE.
- But combined, they are often complementary (not redundant).
- Large CHW TES can also reduce capital costs (vs chiller plants).
- Consider TES whenever planning CHP, TIC, or Energy Storage.
- Consider TES especially when planning Chilled Water capacity investments, specifically at times of:
 - New construction,
 - Retrofit capacity expansions, or
 - Retirement / replacement of aging thermal plant equipment.
Questions / Discussion?

Or for a copy of this presentation, contact:

John S. Andrepont
The Cool Solutions Company
CoolSolutionsCo@aol.com
tel: 1-630-353-9690