



Distribution Piping System Best Practices Presented by: Kristin Wild, P.Eng. June 22, 2016

# Introduction

#### **District Energy Development**

- Neighbourhood Densification
- City Greening
- DE System Components:
  - Energy Source(s)
  - Distribution Piping System (DPS)
  - Energy Transfer Stations

#### **Presentation Overview**

- Best Practices for DPS
  - Planning
  - Design
  - Construction



### Planning Stage

#### **Consider Your Design Including:**

- Energy sources
- System at build-out
- Temperature/pressure ratings
- Heating/cooling requirements
- Existing ground conditions
- Design disciplines

### **Complete System Design**

• Next, consider the energy transfer mediums...

# DPS Design Options – Ambient

#### **Ambient Systems**

- Advantages
  - Heating/cooling
  - Low capacity
  - Low temperature
  - Lower cost DPS
- Disadvantages
  - Mandatory decentralization
  - Design challenges





# **DPS Design Options – Steam**

#### **Steam Systems**

- Advantages
  - Resilience
  - High capacity
  - Centralized
- Disadvantages
  - System losses
  - O&M costs
  - Operator requirements



Steam Plant in Downtown Vancouver, BC

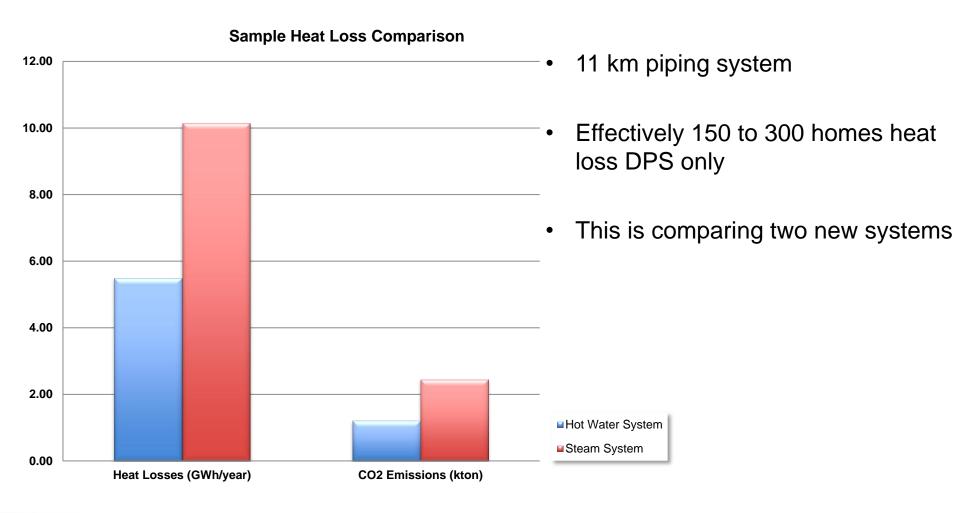


# DPS Design Options – Hot Water

#### **Hot Water Systems**

- Typical installation for Greater Vancouver
- Advantages
  - Heat transfer
  - Efficiency optimization
  - Centralized option
- Disadvantages
  - Distribution requirements

WOOD LEIDAL


isulting engineers



False Creek Energy Centre



### Loss Comparison – Steam to Hot Water

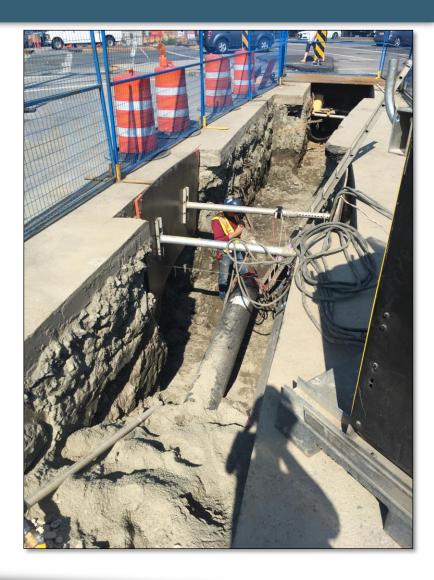




# **DPS Piping Design – Steel**

### Higher Pressure/Temperature Higher Cost Direct-Buried

#### **Design Considerations:**


- Bonded System
- Expansion Compensation
- Pre-Stressing
- Material lead time





# DPS Piping Design – Steel







#### **Steam to Hot Water Conversion Project**

- Replacement of Aging Steam Infrastructure
- Multi-year transition (2011-2015)
- Commissioned over 11 km piping and 130 buildings
- Ongoing new building connections
- Lower temperature: 190° C to 80° C (374 to 176 F)
- Reduced costs >\$5M/year
- Reduced GHG Emissions >20%
- Campus Research Opportunities





- Phased construction temporary steam to hot water conversion plant for transition period
- Maintain process steam requirements
- New 60 MW energy centre
- Repurposed steam tunnels throughout campus





- Underground Tunnels
- Direct-Buried
- Above Ground

### Repurposed Steam Tunnels $\rightarrow$



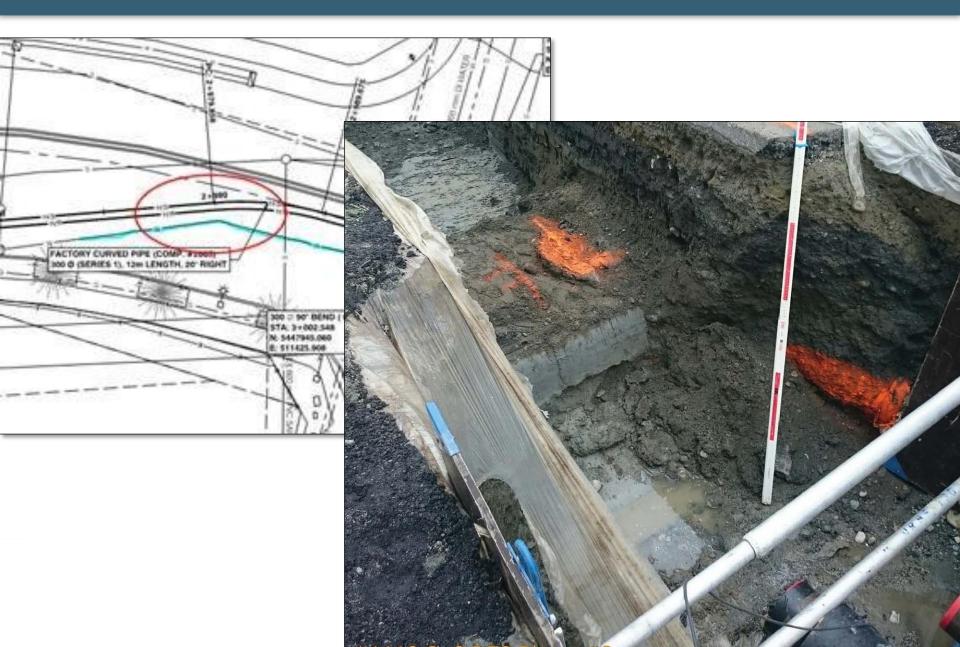




#### STEAM CONVERSION PLAN






### **Design/Construction Lessons**

- Performed value engineering
  - Real-time data
  - More aggressive sizing
- Large work phases
  - Economies of scale
- Standardized system
  - EN 253 Piping, ETS
  - Consistent owner, consultant, contractor
- Reduced standard pipe cover
- Developed standing supplier agreement
- Refined form of tender





# Case Study: Utility Conflict



### **Construction Practices**

#### **Concealed Unknowns**

- Know your jurisdictional requirements
- Compile best-available existing information
- Establish your team
- Check design interfaces
- Discuss risk trade-off with client

#### **Installation Quality Control**

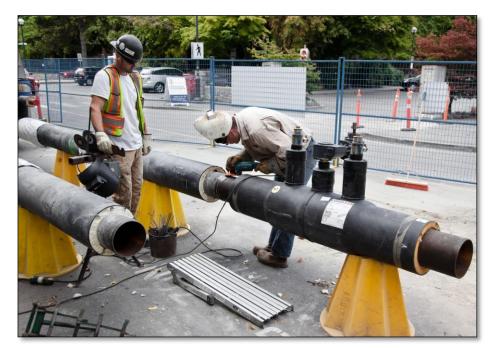
- Moisture content control
- Leak detection?
- Welding Procedures
- Ensure correct expansion compensation



## Conclusions

### Understand System Goals Design for Complete System

#### **Phasing Approach**


- Evaluate decisions
- Cost/schedule efficiencies

#### Adapt Contract Structure

#### **For Designers**

- Check interfaces
- Maintain design flexibility
- Standardize where possible





#### Thank you!

**Contact Information:** 

Kristin Wild, M.A.Sc., P.Eng. Project Engineer <u>kwild@kwl.ca</u> p. 604 293 3273

