

Analyze and Implement: Modernizing an Airport Central Utility Plant

Sustaining Our Success June 26-29, 2017

> Haven Cassidy, PE Jeff Easton, PE

- Introduction
- Owner Considerations
- ► Growth / Challenges
- Modernization Analysis
- Heating Upgrades
- Cooling Upgrades
- Construction Phasing
- ► Next Steps

INTRODUCTION

DENVER INTERNATIONAL AIRPORT

- Opened February 28, 1995
- ▶ 58.3 million travelers in 2016 (Record!)
- ▶ 53 sq. miles (Largest Land Area Airport in US)
- 76,000 Feet of Length on Six Runways
- 19 consecutive months of record-setting traffic
- >6M Square Feet of Space Under Roof
 - Terminal, 3 Concourses & Airport Office Building
- Served by Single Central Utility Plant
- Secret Underground Bunkers ☺

Photo Courtesy of Denver International Airport

INTRODUCTION

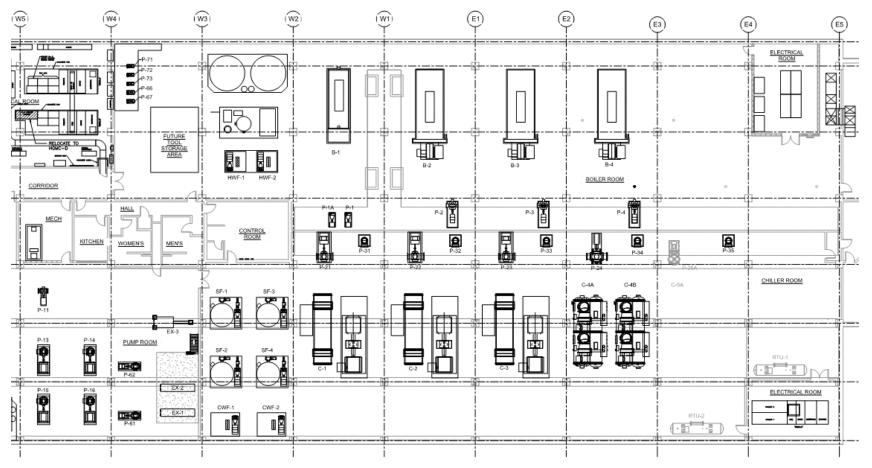
CENTRAL PLANT – EXISTING ASSETS

Heating Water

- Medium Temp Hot Water Boilers (230F Delivery)
- ► 70 deg design dT
- ▶ Original: 3 x 60 MMBTU, 1 x 17 MMBTU
 - 60's derated to 42 MMBTU
- ► Supplemental: 1 x 47 MMBTU

Chilled Water

- ▶ 3 x 4,150 ton R-22 Chillers
- 2 x 2,500 ton R-123 Chillers (2015, VFD)
- ▶ 2 x 1,200 ton Free Cooling HX
- ▶ 1 x 4,150 ton Free Cooling HX
- 8 x 2,708 ton Cooling Towers (VFD)


Photo Courtesy of Denver International Airport

INTRODUCTION

CENTRAL PLANT - ASSETS (2015)

BURNS MEDONNELL.

OWNER CONSIDERATIONS

INTERNAL PROCESS

- Stakeholder Engagement
 - Operations & Maintenance
 - Finance
 - Energy Management
- DEN In-house QA/QC Staff
- On-Call Contracting
 - Design Professionals
 - Commissioning

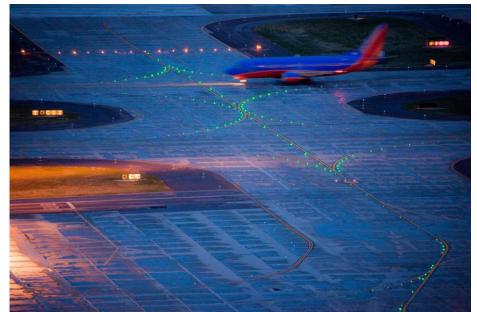
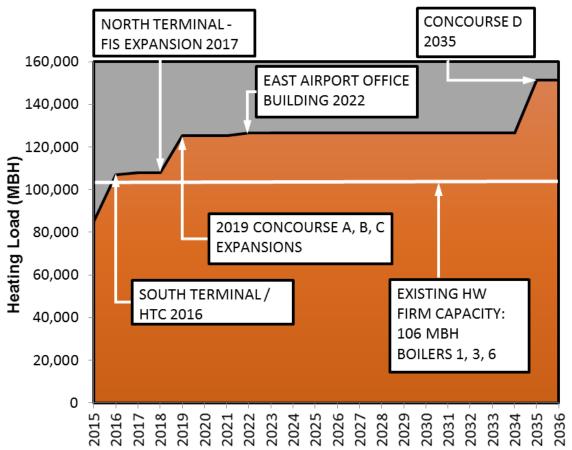


Photo Courtesy of Denver International Airport

GROWTH!


CHILLED WATER

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

GROWTH!

HEATING WATER

CHALLENGES

EXISTING CUP STRUGGLES

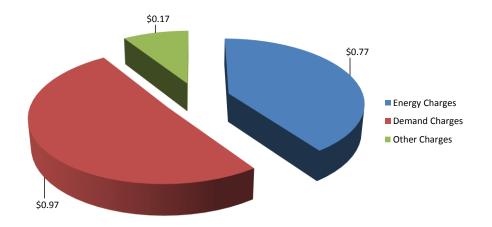
- Completely land-locked
- Subsurface CUP
- Cooling tower above
- Legacy water treatment issues
- Operating inefficiencies
- Optimization opposition

Photo Courtesy of Google Maps

CHALLENGES

EXISTING CUP STRUGGLES

- Heating
 - Firm capacity
 - Redundancy profile
 - Dedicated pumping
 - Flue stack design, orientation and deterioration
- Cooling
 - R-22 Phase-out
 - CW pumping issues
 - Redundancy profile
 - Load Transition/Sequencing low dT

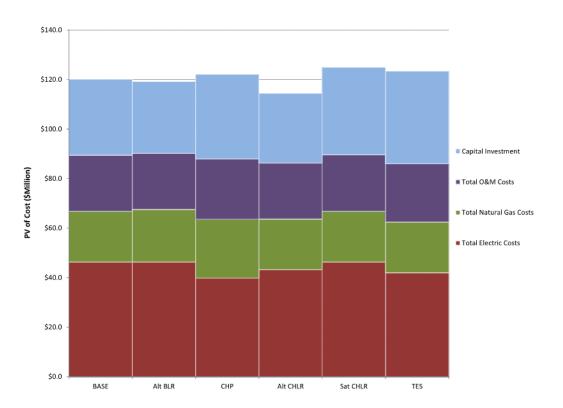


ANALYSIS CUP MODERNIZATION

Goals

- Define future utility system requirements
- Identify technology options
- Analyze ancillary modifications
- Economic Analysis of options
- Provide a utility "Roadmap"

		Incremental Values to Base Case		
	PV Cost	NPV	Cumulative Net	Simple
	(2016 \$MM)	(2016 \$MM)	Cash Flow (\$MM)	Payback
Base Case	\$116.2			
Alt Boiler Size	\$113.4	\$2.8	\$3.0	N/A
Combined Heat and Power	\$118.2	(\$2.0)	(\$1.7)	29.0
Alt Chiller Size	\$109.5	\$6.7	\$11.2	N/A
Satellite Chiller Plant	\$121.0	(\$4.8)	(\$10.6)	N/A
Thermal Energy Storage	\$119.5	(\$3.3)	(\$2.1)	30



ANALYSIS

CUP MODERNIZATION

Technology Options Considered

- Alternative Boiler Size*
- Combined Heat and Power
- Alternative Chiller Size*
- Satellite Central Plant
- Thermal Energy Storage
- Additional Electrical Service

HEATING UPGRADES

ALTERNATE BOILER SIZING

- Phase 1 Boiler #2 Replacement
- Phase 2 Boiler #1, 3, 4 Replacement
 - Full Build = 8 x 20 MMBTU

Challenges

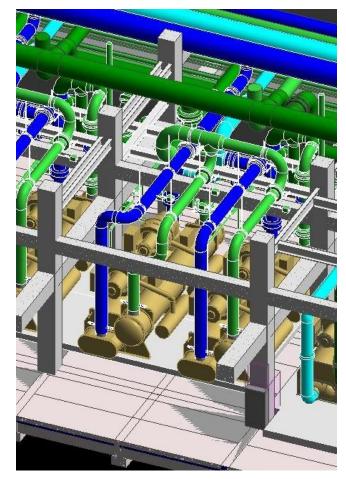
- Maintain airport heating service
- Interim solution/control for mix of boiler/pumps
- ► Flue configuration / aesthetic

System Improvements

- Variable-primary pumping
- Common pumping header
- Flue stack improvements
- Integrate/update controls

COOLING UPGRADES

ALTERNATE CHILLER SIZING


- ▶ 8 x 2,500 ton VFD Chillers 2 per chiller bay
- Single set of CW pumps

Challenges

- Maintain airport cooling capacity
- Phased, seasonal construction
- Electrical service realignment
- Space for variable frequency drives
- Refrigerant phase-out solution (R-22)

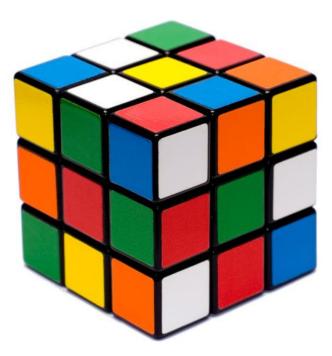
System Improvements

- CW Pumping VS for Free cooling + Optimization
- Staging / Control

CONSTRUCTION PHASING

OWNER CONSIDERATIONS

- Contracting method/timing
- Early Equipment Procurement?
- Owner-performed work?
- Robust Division 01 Specs
 - CUP Operations
 - Equipment Protections
 - Critical Hours
- Strictly define outage tolerances
 - 100% continuous operation?
 - Temperature float allowed?
 - Financial Implications?



CONSTRUCTION PHASING

DESIGN CONSIDERATIONS

- Equipment Pathway
- Seasonal loading
 - Zero or low load periods?
 - Alternate means to meet load?
- Controls expectations?
- Valve inventory....can they be trusted?
- Interdependent systems
- Clear communication of plan

CONSTRUCTION PHASING

CONSTRUCTION CONSIDERATIONS

- Work in an operating CUP
- Additional protections
- Reduced labor efficiency
- Confirm Rigging/Pathway
- Diligent Communication

NEXT STEPS

FINISH THE FIGHT!

- ▶ Boiler #1, #3, #4 Replacement
 - Early Design Underway
 - Secondary Pump replacements
 - Construction Complete Fall 2018
- Chiller Replacement Construction
 - Starting in Fall 2017
 - 15,000 tons installed
 - 2-year duration with phasing
- Continuous Improvement
 - Maintenance Programs
 - Optimization Strategies

Photo Courtesy of Denver International Airport

QUESTIONS?

Haven Cassidy, PE Project Manager p: 303-342-2753 e: haven.cassidy@flydenver.com Jeff Easton, PE, CEM Project Manager p: 303-474-2294 e: jaeaston@burnsmcd.com

WWW.BURNSMCD.COM

Photo Courtesy of Denver International Airport