Water Savings Using The Thermosyphon Cooler Hybrid Heat Rejection System: Case Studies From Atlanta, Phoenix, Seattle, and Boston

Thomas P. Carter, P. E.
Johnson Controls, Inc.
Waynesboro, PA, USA
Four Key Points to Remember

Evaporative Cooling is Efficient in Terms of:
- Energy
- Cost
- Space

Lowering Chiller Plant Operating Costs Requires Focusing on Both Energy & Water

Hybrid Systems Increase The Water Resiliency & May Lower The Cost Of Operating The Chiller Plant

Evaluation of Alternatives Requires Detailed System Modeling
The Pros and Cons of Evaporative Heat Rejection

Evaporative Cooling is Efficient in terms of:
- Energy
- Cost
- Space

Pros:
- Ability to reject heat to the cooler ambient WB versus DB
- Ability of evaporating moisture to pick up significantly more heat than dry air

Cons:
- Consumes massive amounts of water
- Cooling tower blowdown may require additional special disposal requirements
Water & Waste Water Costs Represent A Growing Portion of Total Utility Spend for Many Chiller Plants

Lowering Chiller Plant Operating Costs Requires Focusing on Both Energy & Water
Freshwater Stress - The Global Perspective

Forces Driving Fresh Water Consumption:

- Population growth increases total demand
- Economic growth increases per capita demand

Consumption increases ...

driving Freshwater Stress worldwide
Water & Sewer Prices Are Escalating Quickly

Long-term trends in consumer prices (CPI) for utilities

Exhibit 1. Long-term trends in the Consumer Price Index (CPI) for utilities (1913-2012). The index is set to 100 for 1982-1984 except for telephone and wireless services, where the index is set to 100 for 1997. Date () indicates start of series.
<table>
<thead>
<tr>
<th>City</th>
<th>Water</th>
<th>Sewer</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, GA</td>
<td>$8.19</td>
<td>$20.85</td>
<td>$29.04</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>$4.78</td>
<td>$3.35</td>
<td>$8.13</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>$6.87</td>
<td>$15.61</td>
<td>$22.48</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>$6.86</td>
<td>$8.56</td>
<td>$15.42</td>
</tr>
</tbody>
</table>

Hybrid Systems

- Adiabatic Dry Coolers
- Parallel or Series Dry Coolers
- Hybrid Wet/Dry Products
- Thermosyphon Cooler Hybrid System (TCHS)
Psychrometric Chart For Atlanta, GA

Summer Design Point
Thermosyphon Cooler Hybrid System (TCHS)

“Wet” when it’s Hot, “Dry” when it’s Not
Thermosyphon Cooler (TSC) – Basic Conceptual Design
The Cooling System Interacts With Its Environment And The Rest of The Plant

1. Weather \(f(\text{hour of the year}) \)
2. Cooling Requirements \(f(\text{Hr of Day, Day of Week, Month of Year, Weather}) \)
3. Water Availability \(f(\text{Hr of Day, Day of Week, Month of Year, Weather}) \)
4. Energy and Water Costs \(f(\text{Hr of Day, Day of Week, Month of Year, Weather}) \)
5. Plant Efficiency \(f(\text{Weather, Control Strategy, Equipment}) \)
6. Heat Rejection Load \(f(\text{Weather, Cooling Load, Plant Efficiency, Cooling Strategy}) \)
Simplified Chiller Plant Schematic
Cooling Tower Only System
Simplified Chiller Plant Schematic
Thermosyphon Cooler Hybrid System – Type A

Chilled Water Loop

Chiller

Condenser Water Loop

Thermosyphon Cooler
Simplified Chiller Plant Schematic
Thermosyphon Cooler Hybrid System – Type B

Thermosyphon Cooler

Chilled Water Loop

Condenser Water Loop

Chiller

Thermosyphon Cooler

FCDC

DC

CT
Interactive System Schematic From The Chiller Plant Simulation Program
Locations, Systems Modeled, and Assumptions

Locations / Energy Cost:
- Atlanta - $0.0783/kWh
- Phoenix - $0.0684/kWh
- Seattle - $0.0596/kWh
- Boston - $0.1245/kWh

Systems:
- Cooling Tower Only with Min CWT = 65F
- TCHS (A) with Min CWT = 65F
- TCHS (B) with Min CWT = 65F
- TCHS (A) with Min CWT = 85F
- TCHS (B) with Min CWT = 85F

Assumptions:
- Constant 500 Tons Base Load
- 44°F Chiller Water Supply
- 2.0 GPM/Ton Chilled Water Flow Rate
- 2.5 GPM/Ton Condenser Water Flow Rate
- Cooling Tower Sized to Produce 85°F Condenser Water at the Summer Design WB
- 0.53 kW/Ton Chiller Efficiency at the Design Point
- Sewer Charges Only Applied to the Cooling Tower Bleed
- Chemical Treatment Costs = $3.50/1000 Gallons of Bleed
- 3.5 Cycles of Concentration
Annual Energy and Water Use – Cooling Tower Only System

500 Ton Chiller Plant - Annual Water and Energy Use
Cooling Tower Only System

<table>
<thead>
<tr>
<th>City</th>
<th>Annual Make-up Water Requirement (Gal)</th>
<th>System Energy (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, GA</td>
<td>7,000,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>9,000,000</td>
<td>6,000,000</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>7,000,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>7,000,000</td>
<td>4,000,000</td>
</tr>
</tbody>
</table>

- Cooling Tower Make-up Water
- Electricity
500 Ton Chiller Plant - Annual Utility Costs
Cooling Tower Only (CTO) System and TCHS

<table>
<thead>
<tr>
<th>City</th>
<th>Total Annual Plant Utility Costs (Water + Electricity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, GA</td>
<td>$35K</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>$5K</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>$50K</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>$50K</td>
</tr>
</tbody>
</table>

- Water
- Elec

Annual Energy and Water Cost – Cooling Tower Only System & TCHS

27th Annual Campus Energy Conference
Atlanta, GA
February 19, 2014
Change in Annual Operating Cost Vs. Minimum Condensing Water Temperature

Comparsion of a Cooling Tower Only System Annual Operaing Costs
500 Ton Base Loaded Chiller in Atlanta, GA

Annual Operating Costs

$350,000
$300,000
$250,000
$200,000
$150,000
$100,000
$50,000
$0

Minimum Condenser Water Set Point Temperature

CT Only - Water Costs
CT Only - Elec Costs
CT Only - Total Utility Costs
Lowest Operating Cost Doesn’t Always Mean Lowest Energy Cost

Comparison of a Cooling Tower Only and a Cooling Tower + TSC Hybrid System Annual Operating Costs
500 Ton Base Loaded Chiller in Atlanta, GA

$6K Annual Savings

Minimum Condenser Water Set Point Temperature

CT Only - Water Costs
CT Only - Elec Costs
CT Only - Total Utility Costs
CT + TSC - Water Costs
CT + TSC - Elect Costs
CT + TSC Total Utility Costs

TPC.1/25/14
Make-up Water Requirements
– Cooling Tower Only System

Annual Condenser Make-up Water Requirements
Atlanta, GA Cooling Tower Only

Annual Water Requirement = 7,456,513 Gallons Per Year
Make-up Water Requirements – TCHS

Annual Condenser Make-up Water Requirements
Atlanta, GA TCHS

Annual Water Requirement = 2,888,452 Gallons Per Year
Evaporative Cooling is Efficient in Terms of:
- Energy
- Cost
- Space

Lowering Chiller Plant Operating Costs Requires Focusing on Both Energy & Water

Hybrid Systems Increase The Water Resiliency & May Lower The Cost Of Operating The Chiller Plant

Evaluation of Alternatives Requires Detailed System Modeling

In Conclusion:
Four Key Points to Remember