Presenters: Justin Callihan, UVA Chiller Plants Associate Director Joe Witchger, HGA Energy & Infrastructure Group

North Grounds Boiler and Chiller Plant Replacement

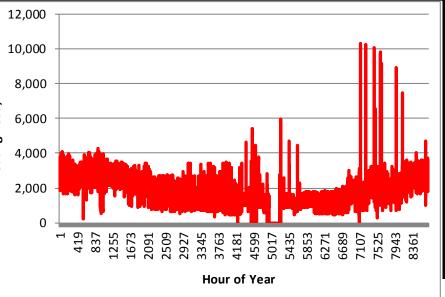
Agenda

- Project Requirements
- UVA North Grounds
- System Option Evaluation
- Economic Summary
- Challenges

UVA Project Requirements Replace Aging, Inefficient Plant Redundant

- Unmanned plant
- Limited Room for Bldg Growth
 Innovative
- Sustainable
- Energy Use/Cost Reduction
- Handle low loads efficiently
- Reliable

- Adaptable to growth
- Well Thought out controls ullet
- Minimize wasted energy




A-Y					
		W	/B		
	Area, Sq Ft	247,471			
	Existing NPS	4	Pipe Area	0.0884	ft^3/Ft
		МВН			Pipe Velocity, FPS
	Existing Peak, MBH	4,949	12	825	20.79
	Projected Loads, MBH				
	Square Footage Based	4,949	12	825	20.79
	Building Meter Data	6,000	12	1,000	25.20
	Existing HX Output	10,646	49	434	10.94
		Cl	ау		
	Area, Sq Ft	10,440			
	Existing NPS	4	Pipe Area	0.0884	ft^3/Ft
				Flow,	Pipe Velocity,
SCHOOL OF LAW		MBH	DT	GPM	FPS
	Existing Peak, MBH	209	12	35	0.88
	Projected Loads, MBH				
	Square Footage Based	209	12	35	0.88
	Building Meter Data	NA	12	-	-
	Existing HX Output	NA	12	-	-
		Combined	d WB- Clay		
	Area, Sq Ft	257,911			
	Existing NPS	6	Pipe Area	0.2006	ft^3/Ft
					Pipe Velocity,
					FPS
	Existing Peak, MBH	5,158	12	860	9.55
	Projected Loads, MBH				
	Square Footage Based	5,158	12	860	
	Building Meter Data	6,000	12	1,000	11.11
	Existing HX Output	10,646	12	1,774	19.71

Heating Load, MBH

MBH

Heating Load,

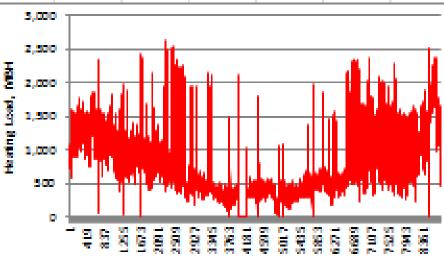
Load Projections

CHEF .

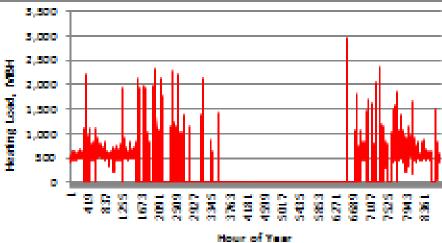
10000

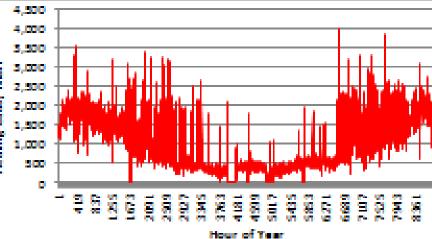
10.00

ALL MALL


IL STA

20. B. P. S.


JAG ADDITION									
Area, Sq Ft	53,860								
Existing NPS	4	Pipe Are	0.0884	ft^3/Ft					
	мвн	от	Flow, GPM	Pipe Velocity, FPS					
Existing Peak, MBH	1,077	12	180	4.52					
Projected Loads, MBH									
Square Footage Based	2,277	12	380	9.57					
Building Meter Data	2,700	12	450	11.34					
Existing HX Output	2,600	20	260	6.55					
	JAG	6 Buildia							


÷.	JAG Dending										
	Area, Sq Ft	114,166									
ł	Existing NPS	4	Pipe Are	0.0884	ft^3/Ft						
-											
					Pipe Velocity,						
Ĩ.		MBH	DT	Flow, GPM	FPS						
	Existing Peak, MBH	2,283	12	381	9.59						
	Projected Loads, MBH										
	Square Footage Based	2,283	12	381	9,59						
ļ	Building Meter Data	2400	12	400	10.08						
	Existing HX Output	7,106	34	418	10.54						
-											

	Combined JAG								
	Area, Sq Ft	168,026							
	Existing NPS	6	Pipe Are	0.2006	ft^3/Ft				
22 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		MBH	म	Flow, GPM	Pipe Velocity, FPS				
	Existing Peak, MBH	3,361	12	560	6.22				
	Projected Loads, MBH	Į							
	Square Footage Based	4,561	12	760	8.44				
	Building Meter Data	5100	12	850	9.44				
	Existing HX Output	9,706	28.4	683.52	7.59				

Hour of Year

		Slaug	ghter				
	Area, Sq Ft	101,300					
	Existing NPS	4	Pipe Area	0.0884	ft^3/Ft		
				Flow,	Pipe Velocity,		
		MBH	DT	GPM	FPS		
	Existing Peak, MBH	2,026	20	203	5.11		
The second	Projected Loads, MBH						
	Square Footage Based	2,026	20	203	5.11		
	Building Meter Data	1,500	20	150	3.78		
	Existing HX Output	4,848	48	202	5.09		
tion manufacture							
	Student Faculty						
The Property	Area, Sq Ft	26,317					

MBH

2 Pipe Area

DT

526

526

650

0.0233 ft^3/Ft

70

70

87

FPS

Pipe Velocity,

6.71

6.71

8.29

Flow,

GPM

15

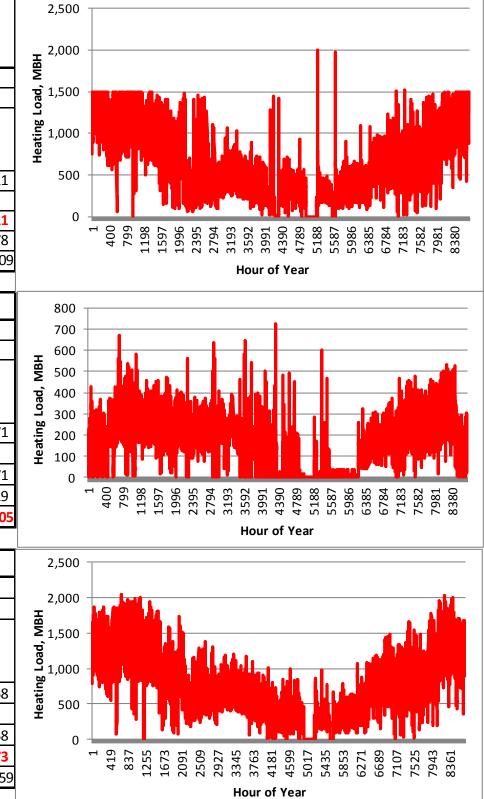
15

15

Existing NPS

Existing Peak, MBH

Projected Loads, MBH


Square Footage Based

Building Meter Data

UNIVERSITY OF VIRGINIA SCHOOL OF LA A. HARRISON III LAW GROUNDS DAVID

Exist	ting HX Output	1,850	19.6	189	18.05					
-	West Loop Piping									
Area	a, Sq Ft	385,528								
Exist	ting NPS	6	Pipe Area	0.2006	ft^3/Ft					
A Star		МВН	DT	Flow <i>,</i> GPM	Pipe Velocity, FPS					
Exist	ting Peak, MBH	7,711	13.6	1,132	12.58					
Proj	ected Loads, MBH									
Squa	are Footage Based	7,711	13.6	1,132	12.58					
Build	ding Meter Data	8,150	13.2	1,237	13.73					
Exist	ting HX Output	17,344	40.2	864	9.59					

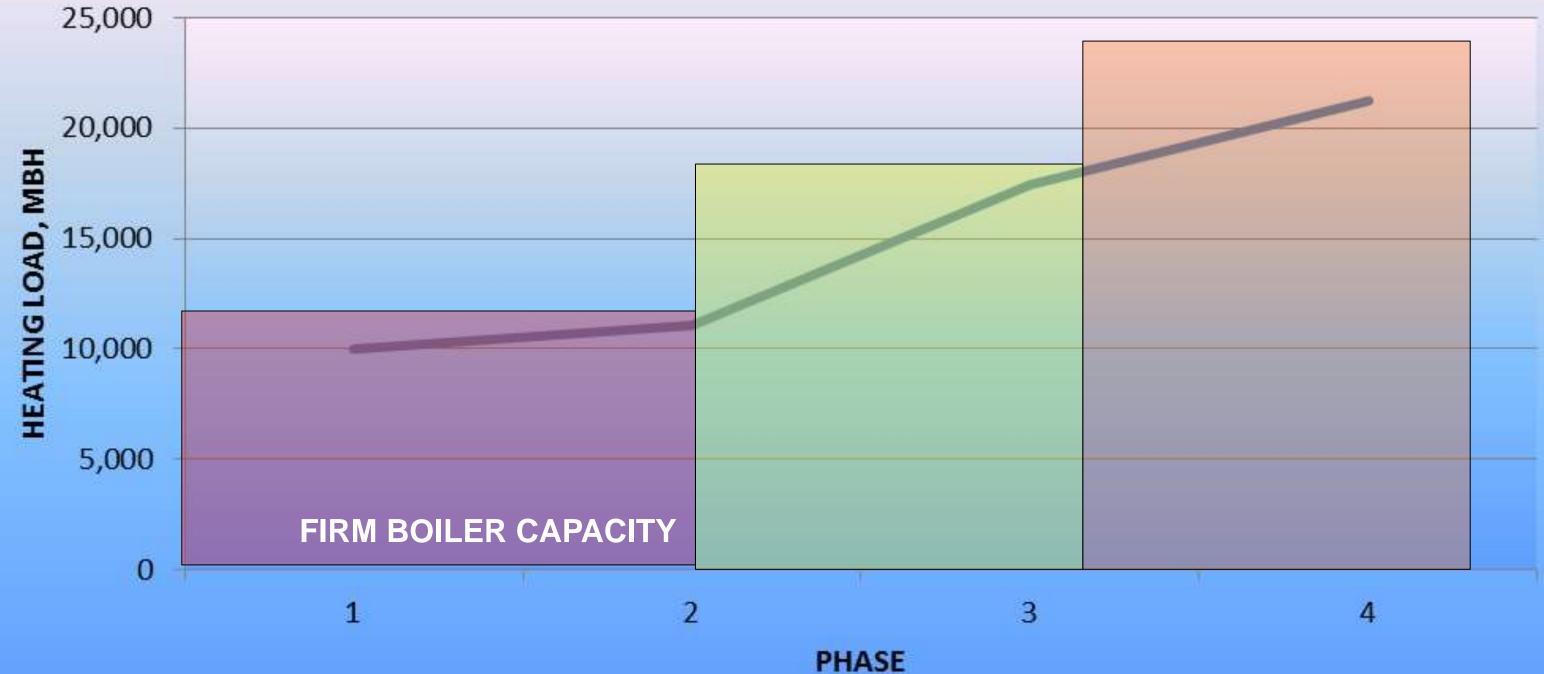
MBH Heating Load,

Projected System Growth

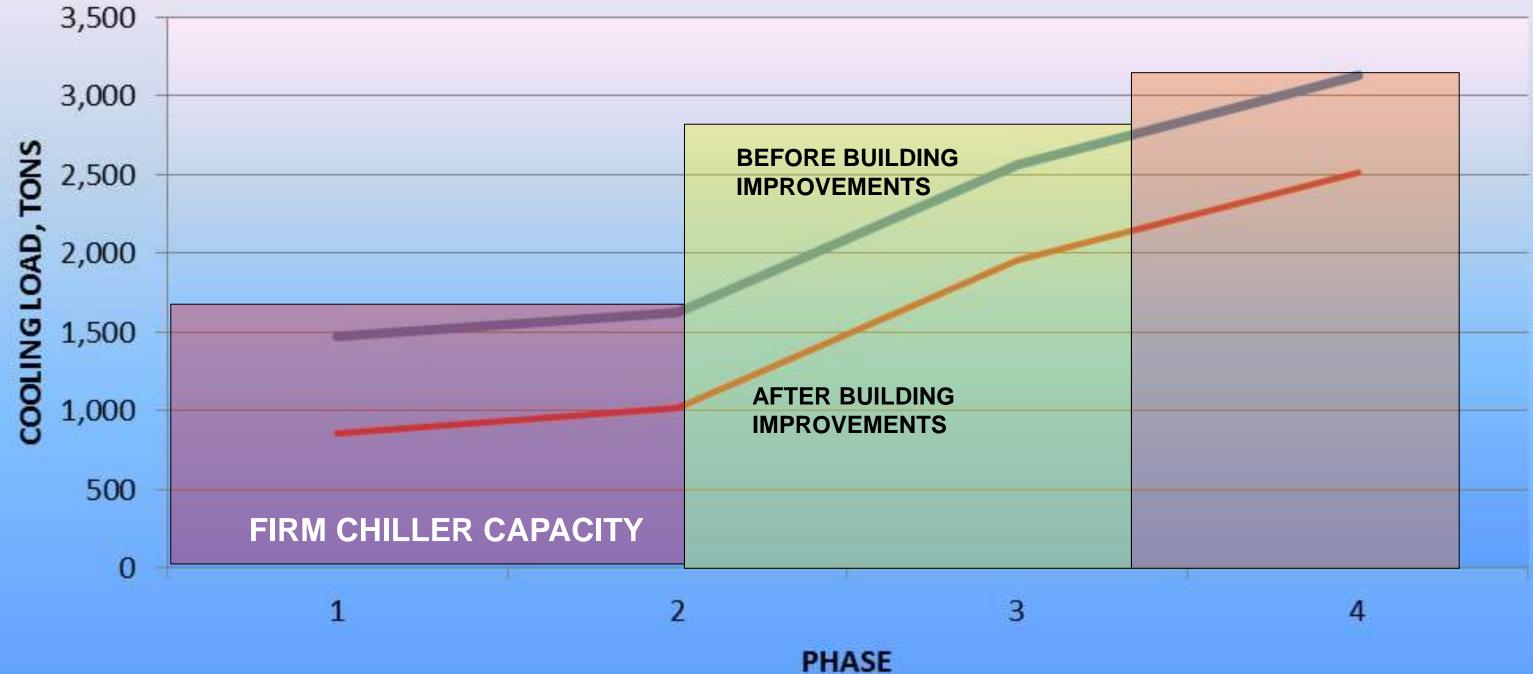
Future JAG Addition

Saunders Central Plant Load

Darden Classroom


Darden Library
Darden Faculty
Saunders
Abbott Center
Sponsors West
Sponsors Gatehouse
Buildings Not on a Control I
Buildings Not on a Central I
Future Darden Expansion
Future Darden Expansion
Future Darden Expansion Sponsors Dining Hall
Future Darden Expansion Sponsors Dining Hall Sponsors East

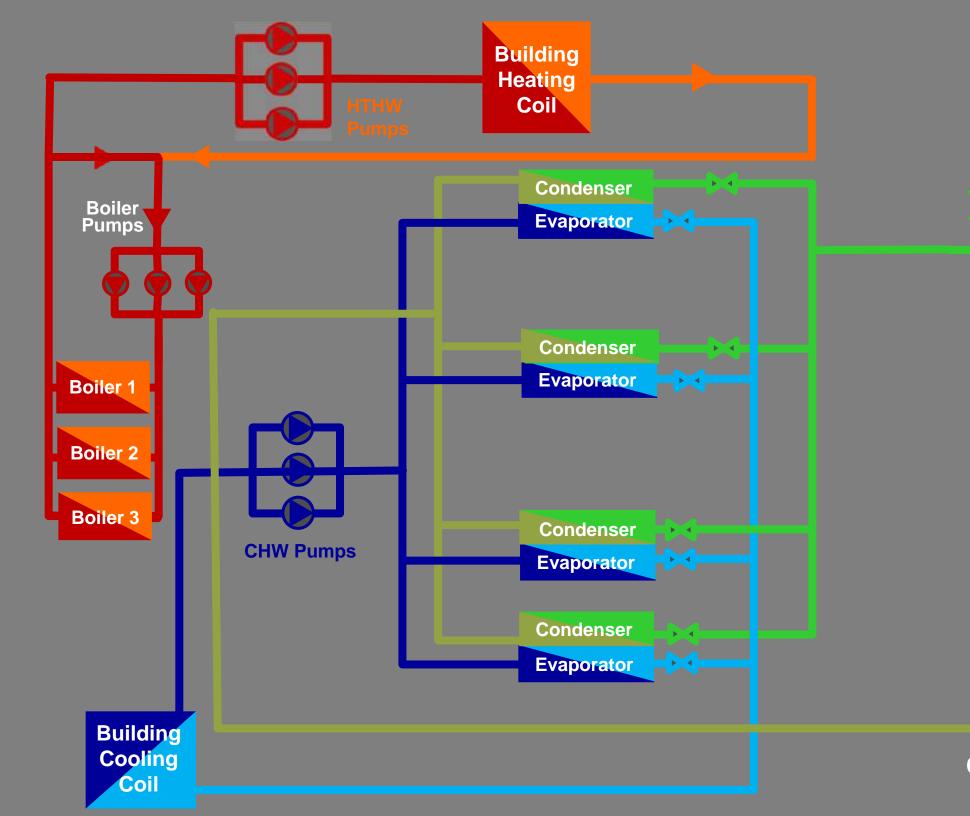
Existing Area

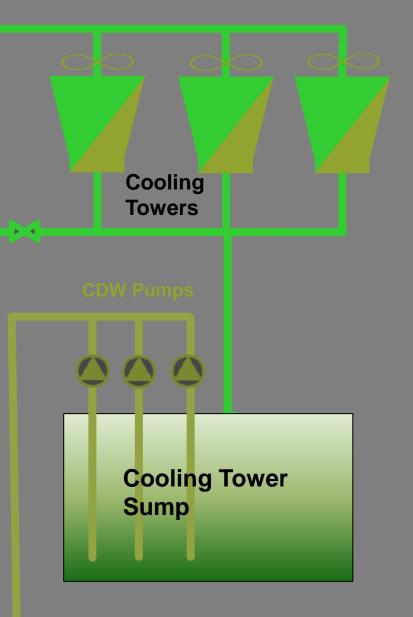

Total Projected Area

	Area (sq ft) 🔻
	60,000
ds	354,920
	79,949
	36,450
	45,138
	45,240
	64,743
	79,900
	3,500
lant	213,975
	50,000
	20,400
	33,600
	60,000
	49,975
Future Area Served	628,895
	558,198
	1,187,093

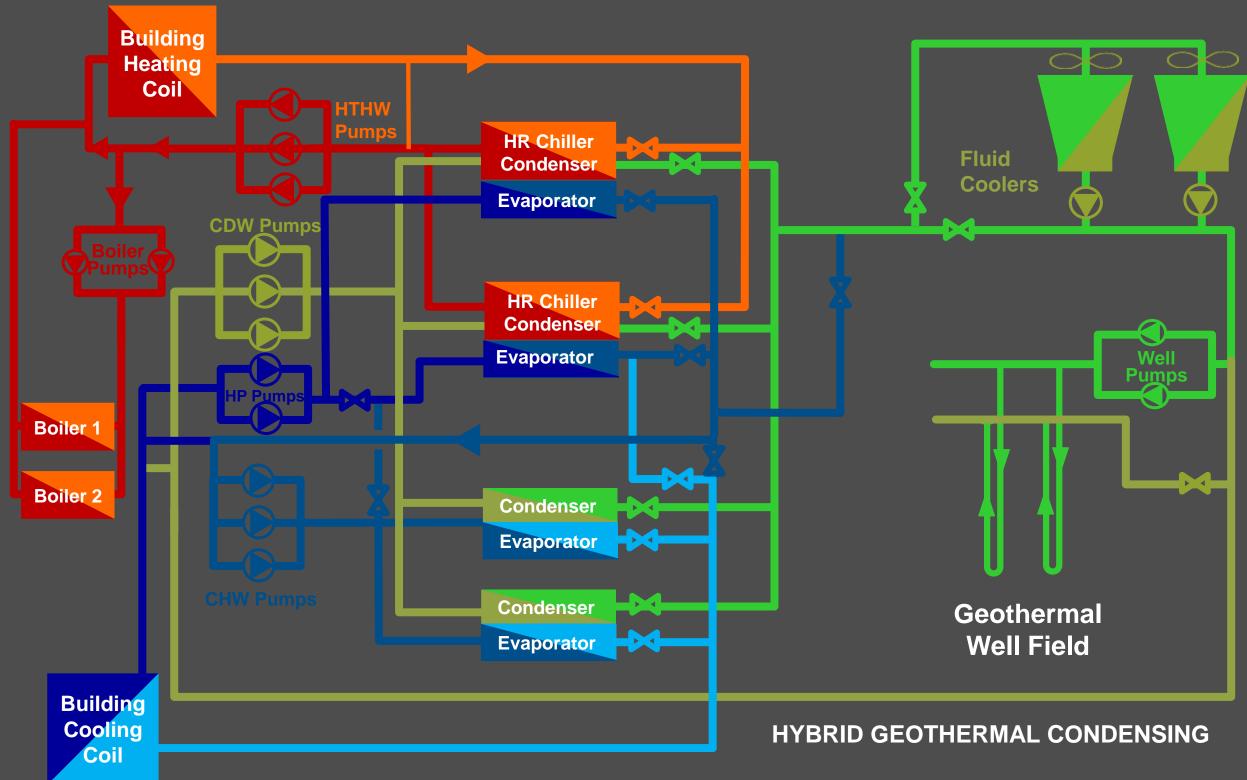
UVA NGMP PROJECTED HEATING LOAD GROWTH

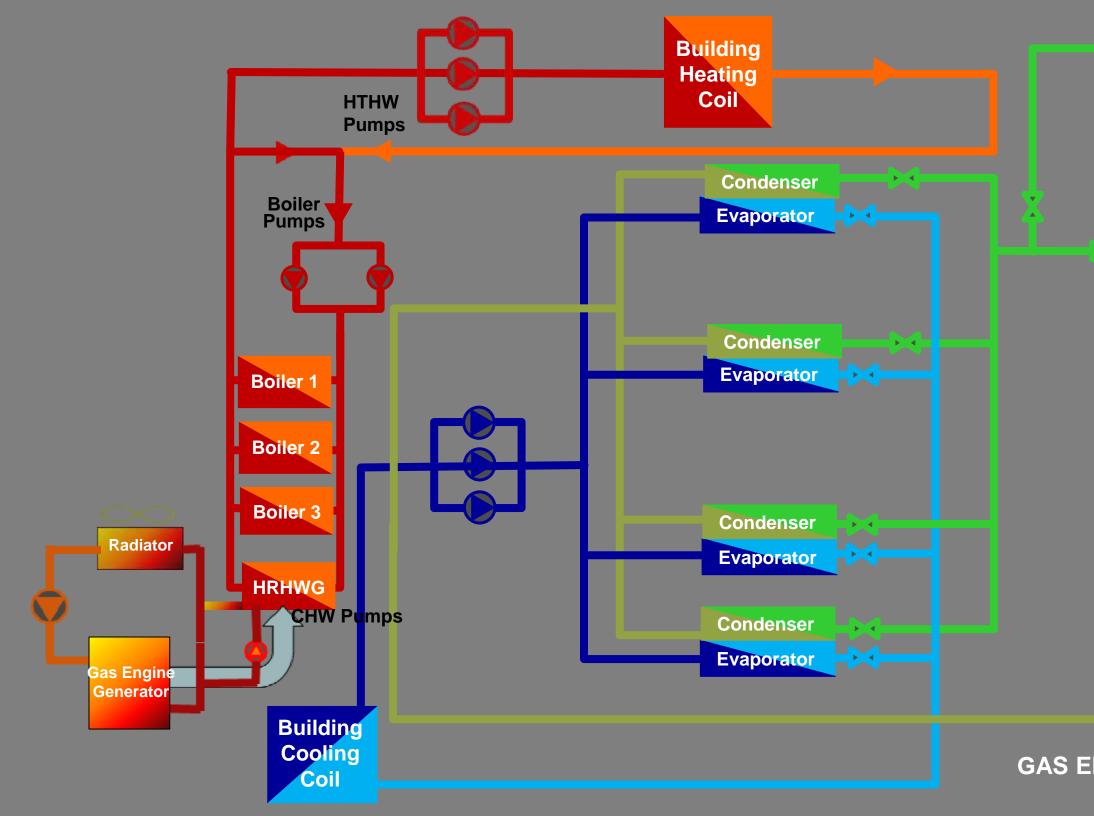
UVA NGMP PROJECTED COOLING LOAD GROWTH

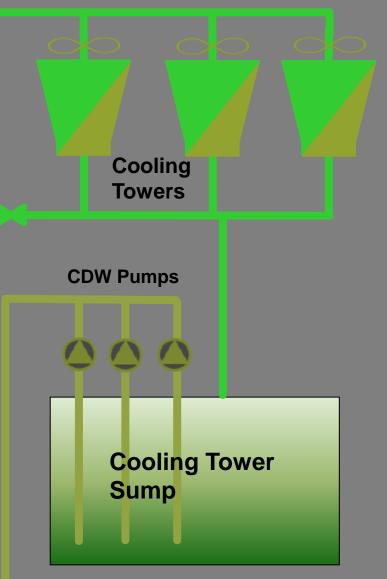




UVA Project Monitoring


- Trend Logs from existing plant perform the basis for monitoring performance / Improvement of new Plant.
- Key Metric:


Total Energy Delivered by Plant Input Energy to Plant

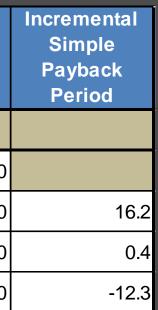


CONVENTIONAL CHILLER/ BOILER PLANT

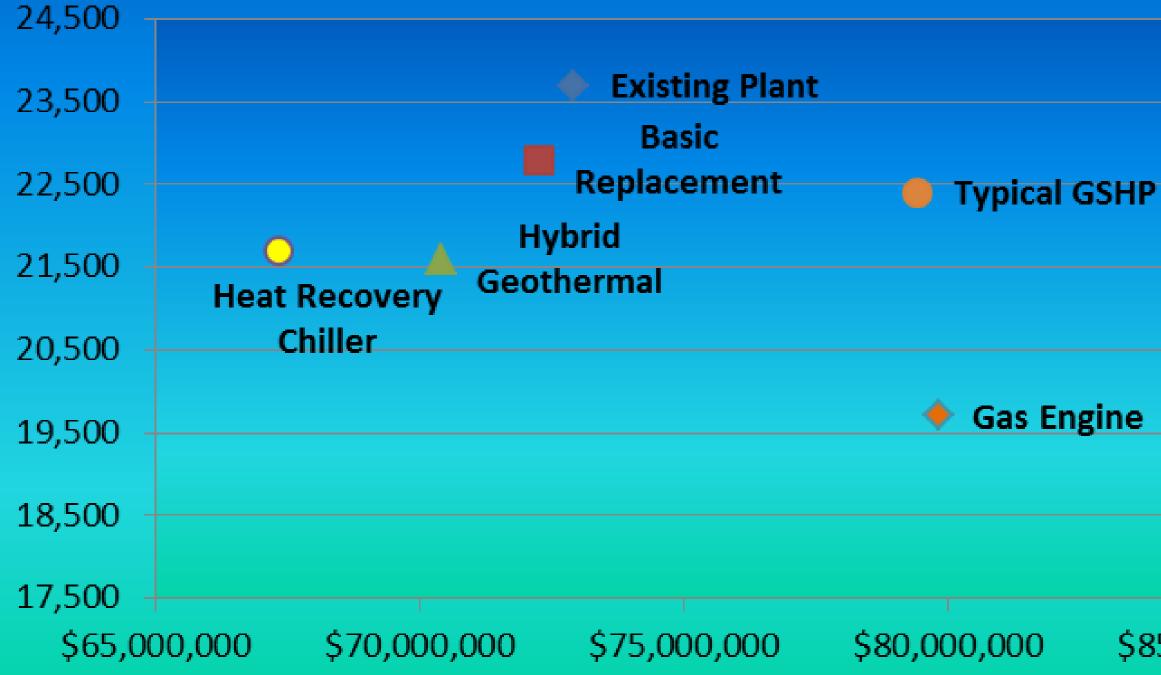
GAS ENGINES WITH HEAT RECOVERY

Economic Parameters At Time of Study

4.75 % Cost of Capital
2.4 % Average Inflation Rate
2.35% Discount Rate
25 Year Life Cycle Cost Analysis, Operations Start 2014
Gas Cost FY 2012 Average of \$8.46 / MMBTU
VA Electric & Power Co 6VA Rate with All Riders
EIA Projected Inflation Rates for Gas, Electric, Carbon
\$15/ MTECD Nominal Carbon Value 2014


Summary of Performance

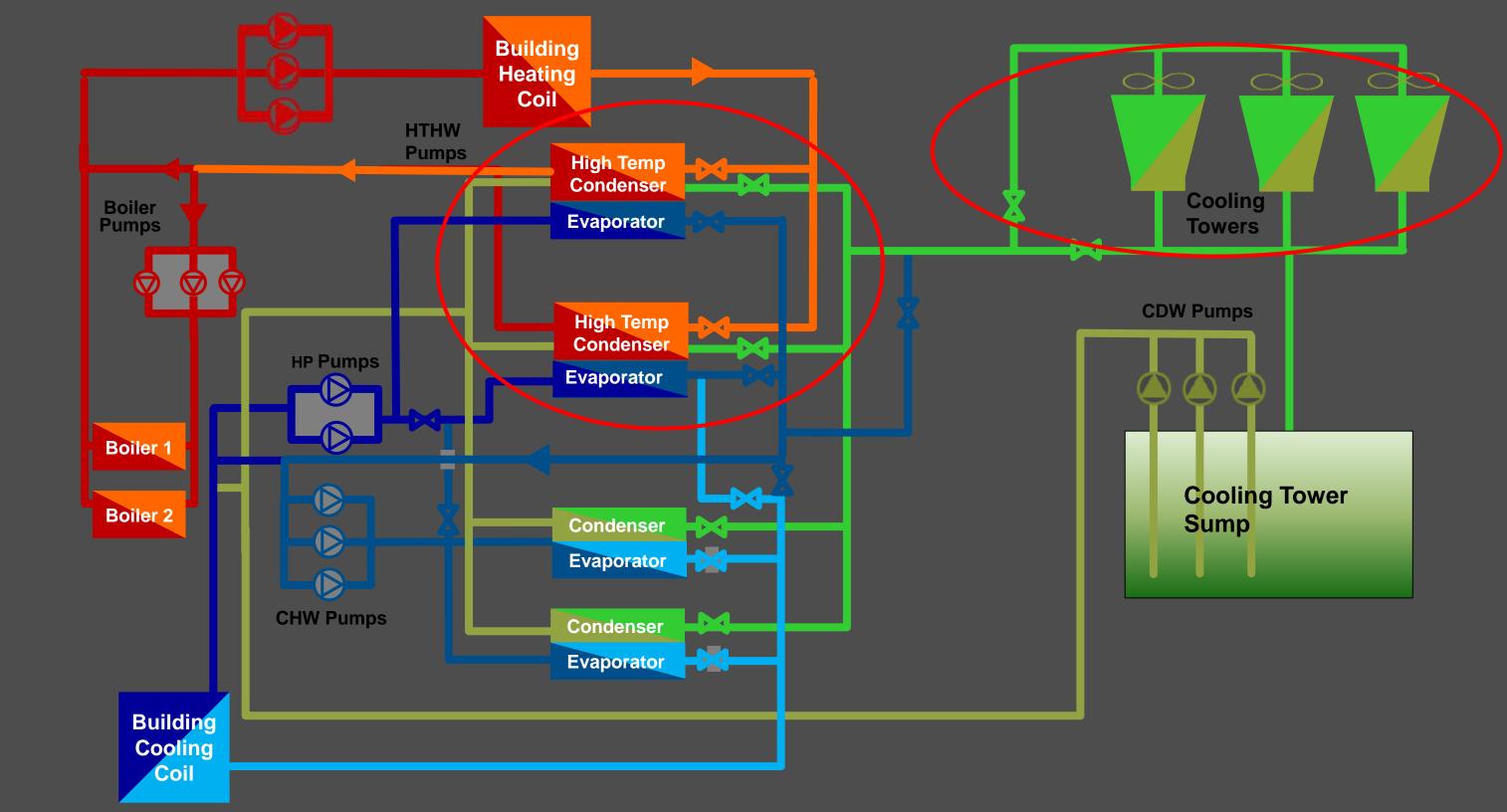
System Option	Gas Use, MMBTU	Purchased Electricity, kWh	Total Site Input Energy, MMBTU	Total Source Input Energy, MMBTU	Annual Greenhouse Gas Emissions (MT CO2e)
Existing Plant	58,400	39,944,000	195,000	545,000	23,700
Basic Replacement	49,600	39,075,000	183,000	526,000	22,800
Hybrid Heat Pump	19,700	39,971,000	156,000	507,000	21,600
Heat Recovery Chiller	19,700	40,041,000	156,000	508,000	21,700
Gas Engine	158,000	22,045,000	233,000	427,000	19,700


System Option	Gas Use, MMBTU	Purchased Electricity, kWh	Total Site Input Energy, MMBTU	Total Source Input Energy, MMBTU	Annual Greenhouse Gas Emissions (MT CO2e)	NGP Annual Greenhouse Gas Emissions Reduction (MT CO2e)	
Existing Plant	58,400	4,142,000	72,500	108,900	5,230		\$857,000
Basic Replacement	49,600	3,273,000	60,800	89,500	4,310	18%	\$713,000
Hybrid Heat Pump	19,700	4,168,000	33,900	70,500	3,190	39%	\$496,000
Heat Recovery Chiller	19,700	4,239,000	34,200	71,400	3,230	38%	\$508,000

Summary of Economics

System Option	Gas Cost	Electric Cost	Water Cost	First Year Operating Cost	Capital Cost	Life Cycle Cost incl. Incremental Maintenance
Existing Plant	\$488,000	\$3,021,000	\$56,000	\$3,560,000		
Basic Replacement	\$414,000	\$2,949,000	\$51,300	\$3,400,000	\$8,500,000	\$72,300,000
Hybrid Heat Pump	\$163,000	\$3,006,000	\$17,900	\$3,190,000	\$11,900,000	\$70,400,000
Heat Recovery Chiller	\$163,000	\$3,011,000	\$23,900	\$3,200,000	\$8,580,000	\$67,300,000
Gas Engine	\$1,340,000	\$1,965,000	\$36,400	\$3,520,000	\$9,980,000	\$79,800,000

GHG Emissions vs NPV of 25-Yr Life Cycle Cost



Gas Engine

\$85,000,000

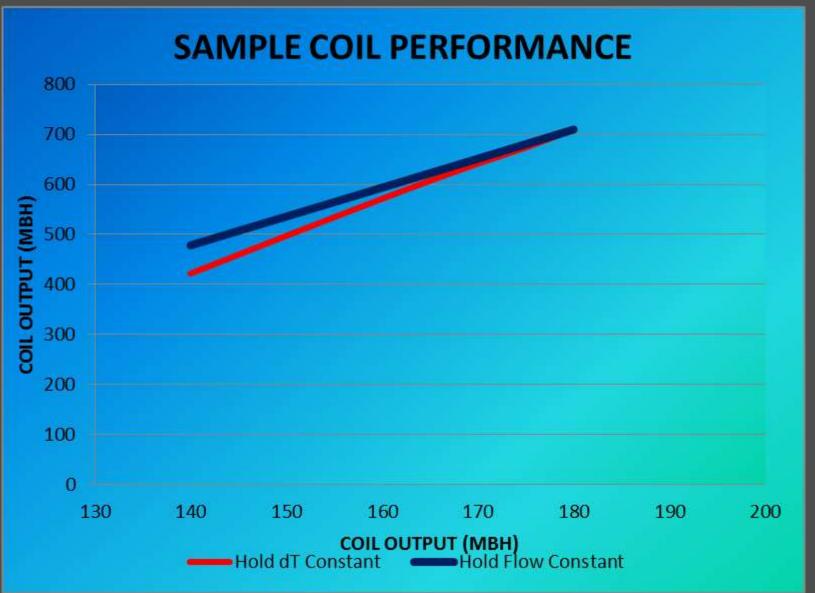
Final Configuration- HR/ Centrifugal Plant

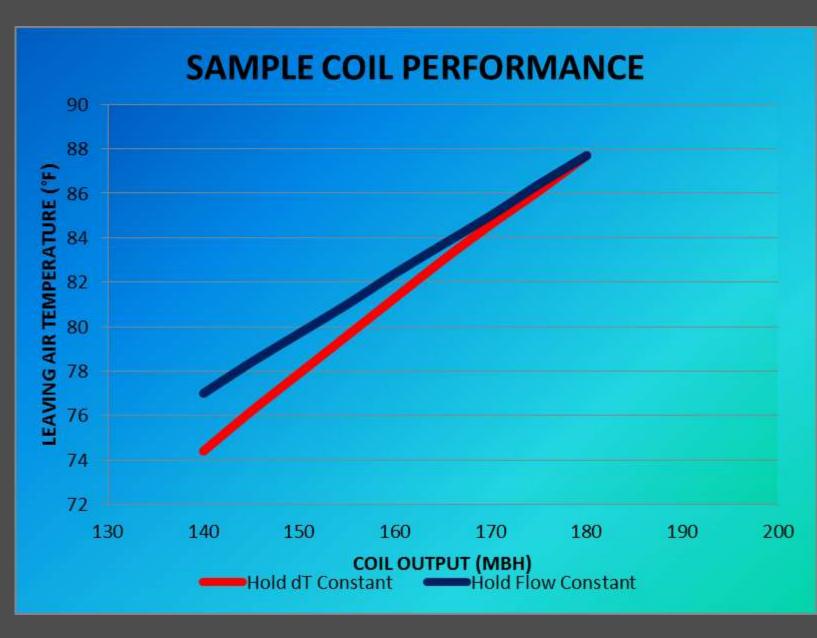
- (2+1) 1000 Ton High Efficiency Centrifugal Chillers Redundant Variable Primary CHW Pumping
- (4+3) 160 Ton HR Chillers- 140°F /42°F
- (3+1) 1025 Ton Cooling Towers
- (3+2) 6000 MBH High Efficiency Condensing Boilers Redundant Primary/ Secondary HHW Pumping
- 2400 sq ft Added to house additional equipment

Conversion MTHW to LTHW

Observations

- Thhws 240°F@ 90°F dT
- Heat Generation Equipment less Efficient
- No Opportunity for Heat Recovery
- Building Thhws: 200-154°F @ 30-40°F dT


Limitations


- Solution has to work with existing AHU Systems
- System has to be adaptable to future changes
- No Budget to repipe entire system

ms S

Conversion MTHW to LTHW

Typical Coil Performance

Conversion MTHW to LTHW

Strategy-

- **Target Thhws: 140°F**
- **Eliminate HXR- Direct Connection** •
- Eliminate Recirc Paths Install 2-way valves •
- Operate at 140°F until Systems require elevated Thhws ullet
- Min. Thhws 140°F- DHW loads
- Clean up buildings in future to increase performance. •
- **Requires education of operators** •

Load Profile Considerations

Observations

- **High Turndown required** ullet
- Significant Coincident Heating and Cooling ullet
- Ability to serve additional HR load ullet
- Ability to serve reduced HR load as buildings improve ullet

Limitations

- Simultaneous 140 deg F Thhws with 42 deg F Tchws ullet
- **Turndown to 25 Tons desired** ullet
- N+1 Redundancy required ightarrow
- **Space constraints- Limit Size of redundant capacity** ullet

Load Profile Considerations

Strategy

- Modular HR Chillers for simultaneous Htg and Clg loads ullet
- **Centrifugal Chillers for High Efficiency and Reliability** \bullet
- **Reduce load with HR** \bullet
- **Remaining Loads served with High Efficiency Equipment** \bullet

Interface of Open and Closed Systems

Observations: With HR Chillers

Condenser side open to HHW and Condensing Loop ullet

- **Conventional approach: Closed Loop Fluid Coolers / HXR** ullet
- Goal is to avoid getting dirty Tower Water in HHW/ CHW ullet
- Plant load profile such that HR Chiller capacity needed-generally stable ullet

Limitations:

- **Space constraints** ullet
- **Centrifugal Chillers on Open Towers** ullet
- All VS Centr. chiller more efficient beyond capacity of 1 HR chiller ullet
- Fourth HR unit becomes redundant/ Swing chiller ullet

Interface of Open and Closed Systems

• Strategy

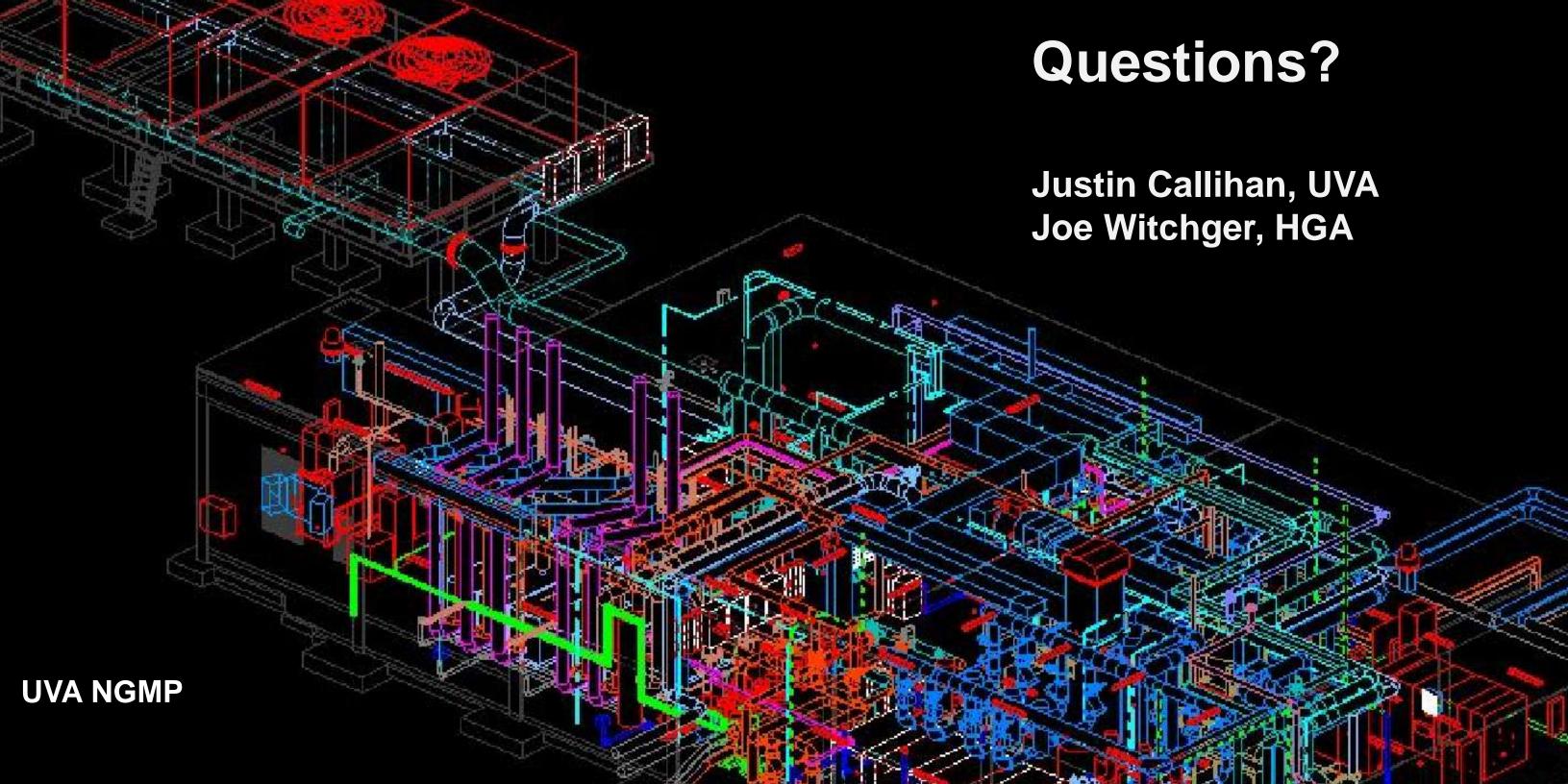
- **Use open Towers** ullet
- Dedicate service of HR chillers to HR or baseload •
 - Service mode can change over time
- Flush Heat exchangers as part of Transition
- Two Valves for redundant isolation ullet
- Automated process •

Controls Opportunities

Observations:

- **Equipment Controls Geared to Equipment performance** ullet
- Most Efficient Combination desired in all load conditions \bullet
- Packaged control strategies not be efficient ullet

Limitations:


Modular Equipment chosen

- Less Robust Controls •
- Limited Flexibility •
- HR Chillers
 - Not efficient in Cooling Mode ullet
 - Share CDW with HR chillers in Cooling Mode ullet

Controls Opportunities

- Strategy
 - Baseload HR chiller on limiting load
 - Dispatch equipment to serve remainder of load
 - Use All Variable Speed Plant
 - Condensing boilers Efficiently serve remainder of load

er of load

