



## The WaterHub at Emory University Moving from Feasibility to Project Execution

Presented by Jonathan Lanciani Jonathan.Lanciani@sustainablewater.com





"The WaterHub is projected to help Emory reclaim some 300,000 gallons of campus wastewater daily, cutting potable water consumption as much as 35 percent and saving the university millions in water utility costs over a 20-year period." Matthew Early, Vice President for Campus Services, Emory University



#### **Emory University Chiller Systems**

| Startup Year                   | 1960s                         |  |  |
|--------------------------------|-------------------------------|--|--|
| Number of Buildings Served     | 50                            |  |  |
| Total Square Footage<br>Served | 4,390,000 sq ft               |  |  |
| Central Plant Capacity         | 20,300 tons (3 plants)        |  |  |
| Number of Chillers             | 20 chillers                   |  |  |
| Fuel Types                     | Electric                      |  |  |
| Distribution Network Length    | 2.5 trench miles              |  |  |
| Piping Type                    | Direct-buried insulated steel |  |  |
| Piping Diameter Range          | 4 to 18 inches                |  |  |
| System Pressure                | 90 psig                       |  |  |
| System Temperatures            | 44 F supply/54 F return       |  |  |
| System Water Volume            | 295,000 gal                   |  |  |

Growing Campus: Complex Systems with Critical Loads

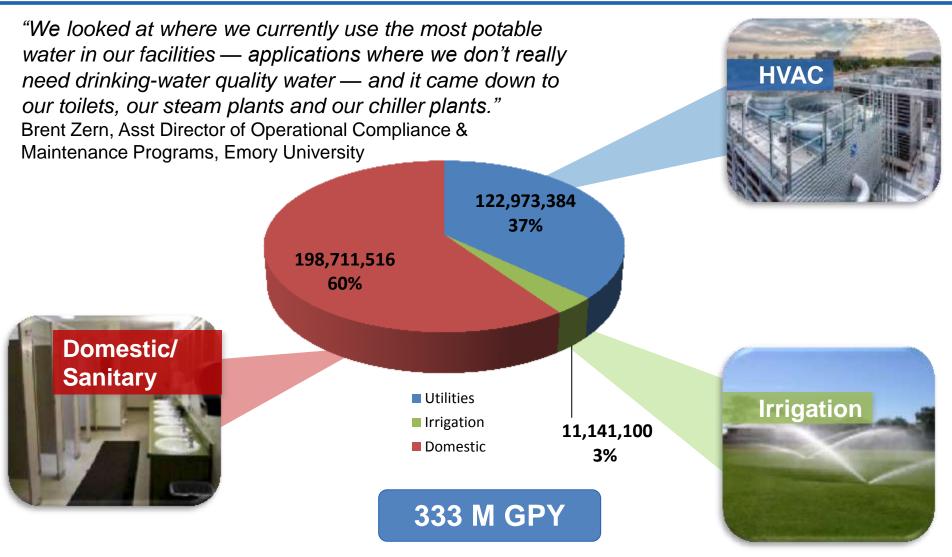


## **Campus Utility Overview**



#### Emory University Steam Systems

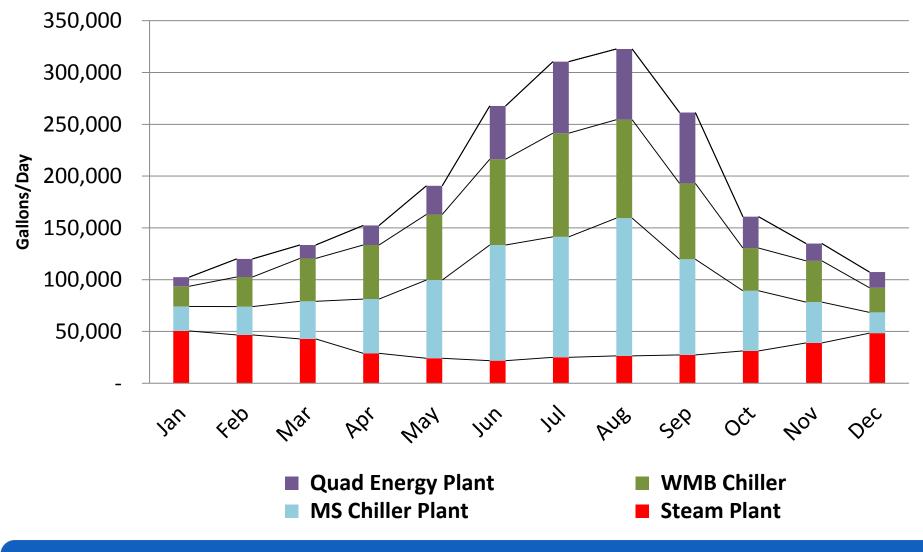



| Startup Year                | 1922                                                              |
|-----------------------------|-------------------------------------------------------------------|
| Number of Buildings Served  | 70                                                                |
| Total Square Footage Served | 7,500,000 sq ft                                                   |
| Central Plant Capacity      | 500,000 lb/hr steam                                               |
| Satellite Plant Capacity    | N/A                                                               |
| Number of Boilers           | 5 boilers                                                         |
| Fuel Types                  | Natural gas, No. 2 fuel oil                                       |
| Distribution Network Length | 3.5 trench miles                                                  |
| Piping Type                 | Majority Class A direct-<br>buried & some walk-through<br>tunnels |
| Piping Diameter Range       | 1-1/2 to 12 inches                                                |
| System Pressure             | 125 psig                                                          |
| System Temperatures         | 353 F/180 F condensate return                                     |
| System Water Volume         | N/A                                                               |



#### Growing Campus: Complex Systems with Critical Loads




## Campus Water Footprint, FY13-14

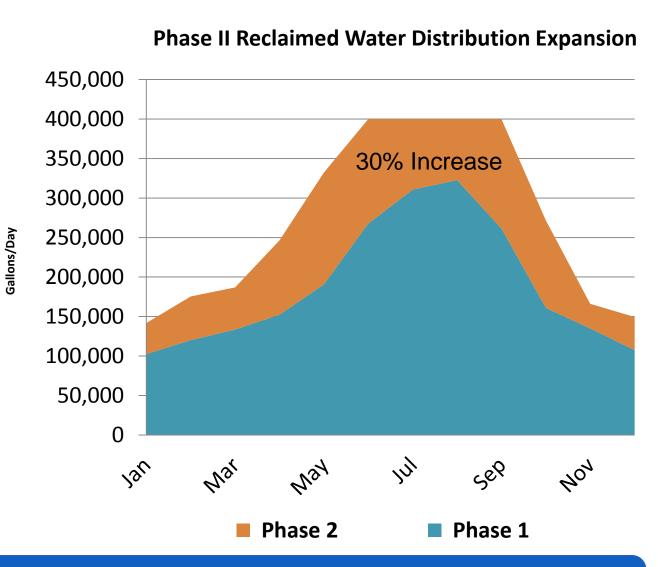


#### 40% Considered Non-potable Demand



## **Reclaimed Water Distribution**




100% Displacement of Utility Water Demand



## **Future Expansion**







30% Total Reduction in Campus Water Use

## Why Water Reuse?



## **Local Water-Related Stresses**

#### "And because we're not using that drinking water, the county can use it other places, which is important for a region prone to water crises."

Brent Zern, Asst. Director of Operational Compliance and Maintenance Programs,

# Aging Infrastructure



#### **Environmental Constraints**



#### Rate Increases Are Necessary for Infrastructure Improvements

# SUSTAINABLEWATER

## Aging Infrastructure: A Local Concern

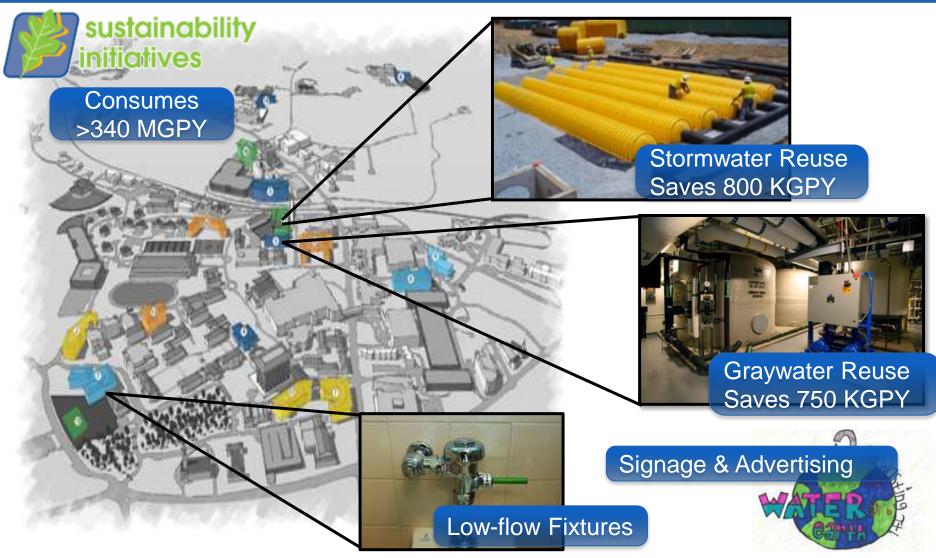


DeKalb County crews work to repair water main break



Atlanta's water needs rely on a system designed in 1875, and build piecemeal ever since




Hundreds go without water after water main break in DeKalb County Posted: Oct 18, 2013 4:26 AM EDT



Water Related Impacts Illustrate Need to Promote Water Management



## **Emory's Water Saving Initiatives**



Water: Strategic Imperative Drives Project Execution for Small Yields



## **Decentralized System Approach**






Municipal Reclaimed Water Not an Option for Campus



## The Evolution of Water Conservation



#### The Most Impactful Solution That Exists



After

## A more sustainable water cycle: Decentralized Reclamation and Reuse



#### Water Use Reduction: 42% Wastewater Discharge Reduction: 90%

~Risk Management ~Cost Savings ~Environmental Responsibility



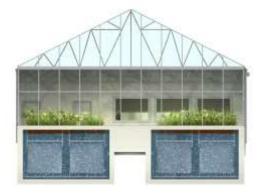
## **Campus Risk Mitigation**

### Benefits to Emory University:

- Redundant Water Supply
  - Drought
  - Municipal infrastructure failures
- Additional On-Site Storage
- Reduced Environmental Impact
- Flexibility, Independence & Resilience
- Reduced Community Reliance
- Minimum recovery time
- Insulation from rising water costs






#### N+1: Reliable and Safe Alternatives to Potable Water

# Conserving Regional Drinking Water W EMORY

"This (facility) offers an interesting case study for how an institution can move a community toward a bold step in water conservation. It's also exactly the kind of reduction we need to see in order to support a more sustainable future ." Ciannat Howett, Director of the Office of Sustainability Initiatives at Emory



water onservation







Emory's WaterHub uses natural processes to reclaim wastewater.

The WaterHub is Important Next Step in Long-Term Conservation Strategy

## **Project Update**



## EMORY | news center



"Emory is a leader in sustainability, with this facility, we're taking a major step forward in becoming one of the first in the nation with this technology for cleaning our own wastewater." Matthew Early, Vice President Campus Services, Emory University

Emory University Proud to be at the Leading Edge in Water Reclamation

Community Outreach Research Opportunity Living-Lear

Living-Learning Laboratory

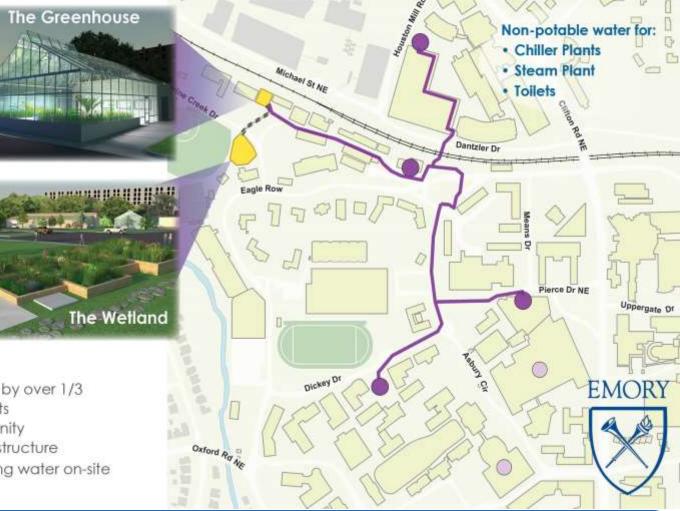
**Educational Tool for Students** 

## The WaterHub at Emory<br/>Extending the lifecycle of our WaterRecycling 140 Million gallons<br/>of water per year

#### Moving Bed Bioreactor (MBBR)

Treatment occurs through speciallyengineered BioPortz moving media to mimic natural processes.

#### Submerged Fixed Film


Natural and synthetic plant roots provide habitat for microbes.

#### **Reciprocating Wetland**

Utilizes biomimicry to imitate and improve upon natural tidal processes through multiple fill and drain cycles.

#### System Benefits:

- Protects water quality
- Decreases campus water footprint by over 1/3
- Saves millions of dollars in utility costs
- · Diminishes demand on the community
- Lowers stress on county water infrastructure
- Reduces energy footprint by treating water on-site



#### First and Only Ecological, Decentralized Reuse System in the US

## Update and Progress Since IDEA 2014





**SUSTAINABLEWATER** 







#### **Construction Completed Entering Commissioning Phase**

## **Emory - Aerial View: Under Construction**



#### Small Physical Footprint, Sited in the Middle of Campus



## **Emory - Construction Photos**









#### Construction Time Frame: 6 – 8 Months



## The WaterHub at Emory University





## The WaterHub at Emory University



Showcase Project for College Campus with Sustainable Vision

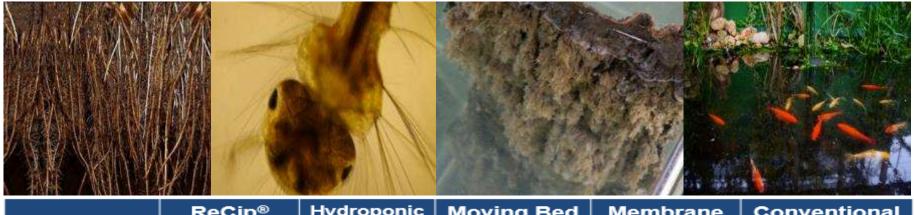


## The WaterHub at Emory



#### Fully Secured Facility Serving as a Sustainable Beacon



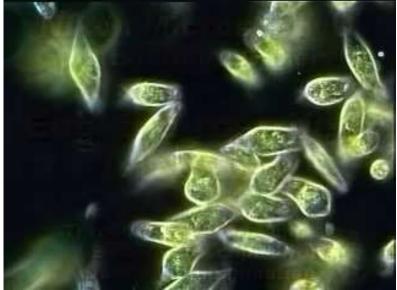

## **Emory Hydroponic System**



A Sustainable Treatment Solution to Treat Extensive Water Demands



## **Ecological Water Treatment Technologies**




|                      | ReCip®<br>Tidal<br>Wetlands | Hydroponic<br>and<br>Fixed<br>Media | Moving Bed<br>Bioreactor<br>(MBBR) | Membrane<br>Bioreactor<br>(MBR) | Conventional<br>Activated<br>Sludge |
|----------------------|-----------------------------|-------------------------------------|------------------------------------|---------------------------------|-------------------------------------|
| Capital<br>Expense   |                             |                                     |                                    | •                               | $\overline{}$                       |
| Operating<br>Expense |                             |                                     | $\bigcirc$                         | •                               | $\bigcirc$                          |
| Energy<br>Efficiency |                             | $\bigcirc$                          | $\bigcirc$                         | •                               | $\bigcirc$                          |
| Effluent<br>Quality  |                             |                                     |                                    |                                 | •                                   |
| Footprint            | $\bigcirc$                  | $\bigcirc$                          | $\bigcirc$                         | $\bigcirc$                      | •                                   |
| Aesthetics           |                             |                                     | $\bigcirc$                         | •                               | •                                   |

Innovative Technology Increases Biodiversity & Reduces Energy Requirements

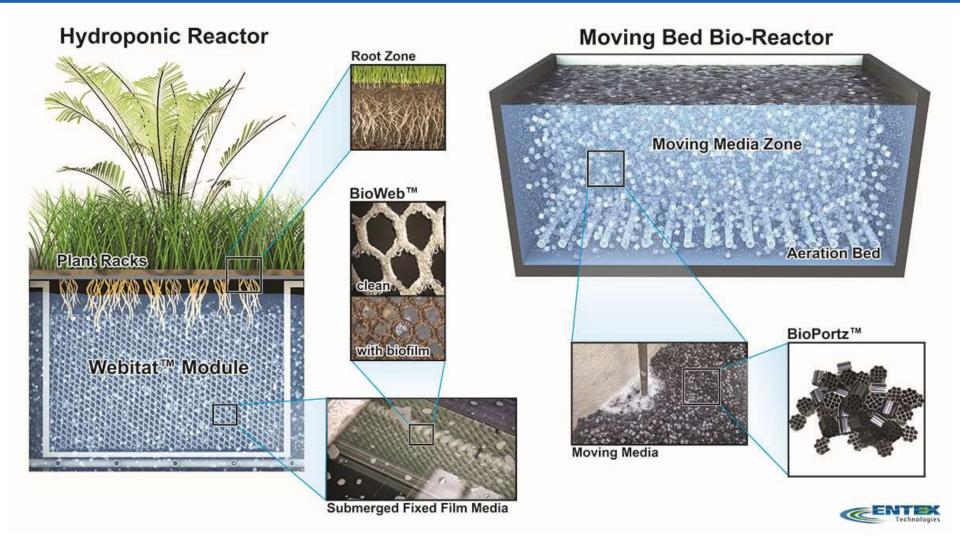


#### Rostrifera





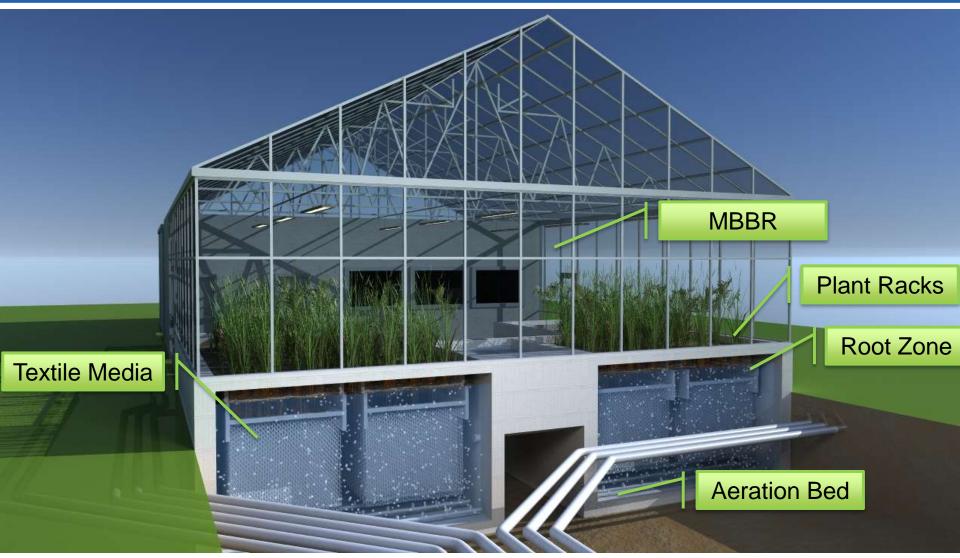
#### Collotheca




#### Aquatic Worm






## Moving & Fixed Media Solutions



Biomimicry: Maximizing Treatment Capacity / Minimizing Energy and Space



## GlassHouse (Upper Site)

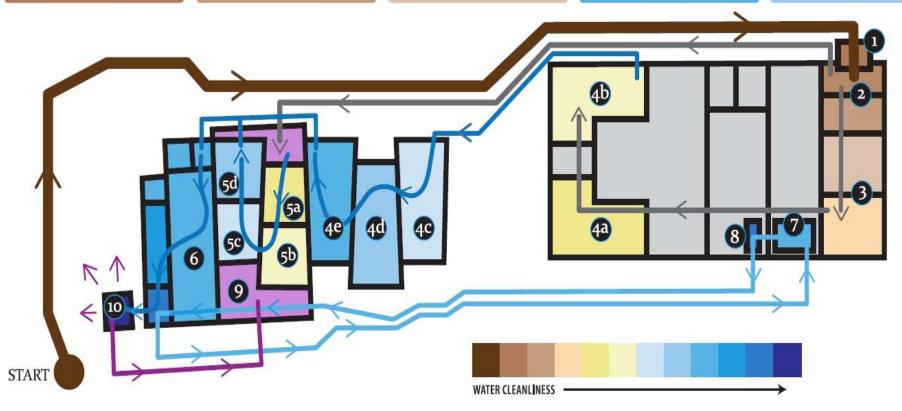


#### GlassHouse Footprint Compact and Efficient at 2,100 SF

## How the WaterHub Works



Rotary Screen. Wastewater is extracted from the south site and sent to the rotary screen (on roof) which removes non-bio-degradables. 2 Anoxic Moving Bed Bioreactors . In an oxygen depleted environment, carbon containing material is removed by clustering microorganisms that colonize on freely-moving "BioPortz" (honeycombed plastic pellets which maximize habitat). Wastewater circulates between MBBRs to optimize nitrogen removal and minimize creation of odorous gases.


#### 8

Aerobic Moving Bed Bioreactors. Wastewater is aerated with course bubble diffusers. This removes much of the carbonaceous material and further removes odorous gases from the water.



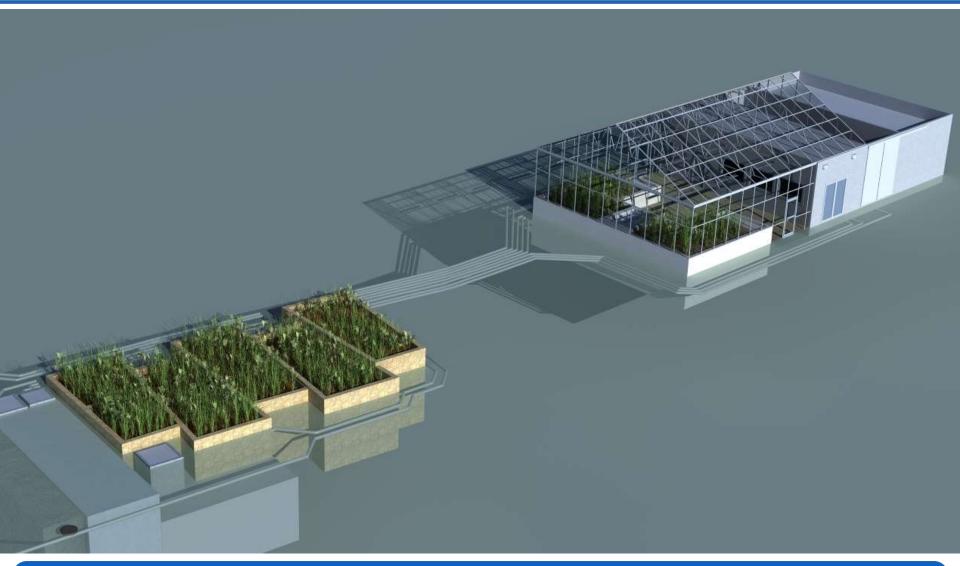
Demonstration Reciprocating Wetlands (DRW). Created to demonstrate alternate waste treatment systems, the DRW receives screened influent from the MBBR. The fill-and-drain wetland cells use various sizes of gravel which provide microorganism habitat. Fill-and-drain cycling occurs 8

to 18 times a day and provides alternating anoxic and aerobic treatment. Requiring little mechanical energy, yet large land mass, a Reciprocating Wetland is a treatment system appropriate to rural areas and developing countries.



10

Campus Distribution. Water is distributed to the steam and chiller plants for use as process make-up water and to residence halls for toillet flushing. 50,000 Gallon Storage Tank. Fully treated water is stored underground. This reserve allows the university to operate heating and cooling for an average of 7 hours in the event of disruption in water availability.


9

#### 8

Ultraviolet Disinfection. Water is subjected to high-quality ultraviolet (UV) light, an energy -efficient, chemical-free method of removing any remaining microorganisms. 7 Disk Filter. Very dean water is sent to the greenhouse and through a disc filter which removes solids using a felt filter membrane. At this point, the water contains very small amounts of microorganisms. Garifier Tank. Removal of dissolved phosphorus by use of coagulating elements and gravity. A portion of the solids are sent to the greenhouse to provide ample bacterial communities to begin the treatment process.

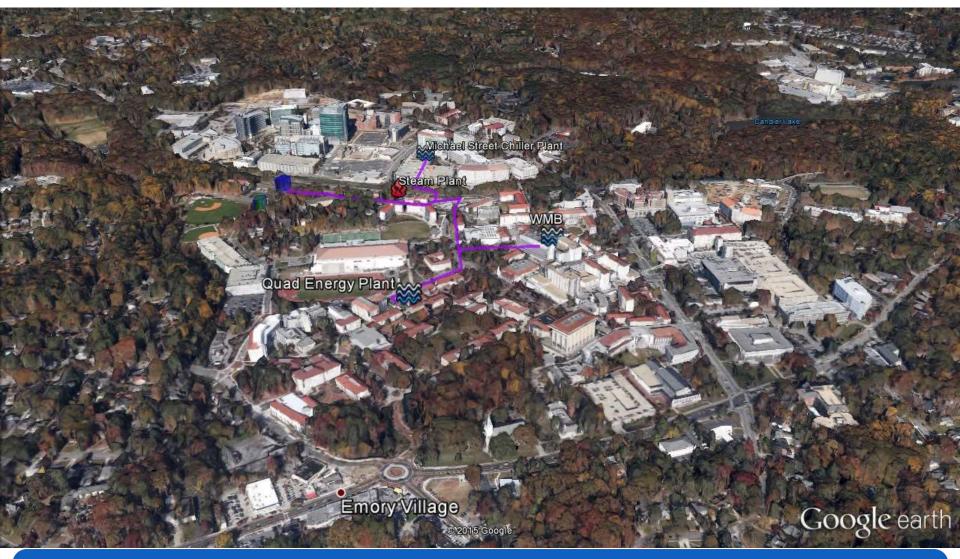


## **Ecological Treatment Design**



#### Seamlessly Integrated Into the Built Environment




## Outdoor System (Lower Site)



Convergence of Multiple Ecological Treatment Technologies

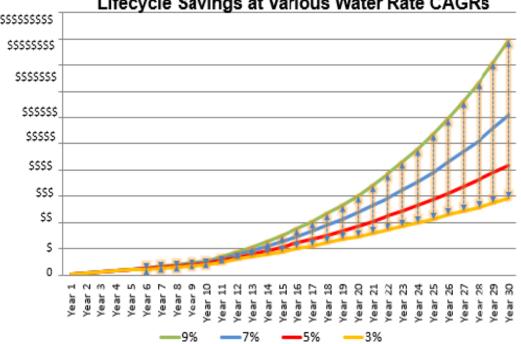


## **Distribution System Tour**



#### 4,425 Linear Feet of Distribution Piping




#### Water Purchase Agreement

~ Shared Savings Agreement ~ Operating Lease ~ DBO Agreement ~ Performance Contract

Cumulative Savings

#### **Benefits**

- No up-front capital
- Innovative Technologies
- Leverages superior credit rating
- Immediate, Guaranteed ٠ Savings
- Long Term Pricing Stability
- No O&M Responsibilities
- SW bears majority of risk



#### Lifecycle Savings at Various Water Rate CAGRs

#### Flexible, Innovative Vehicle that Yields Guaranteed Savings



## O & M under WPA







- Highly Automated Operations with Remote Monitoring Capabilities
- State Certified Operator On-Site
- Daily Compliance Testing
- Preventative & Predictive Maintenance & Repairs
- Includes All Operating Expenses
  - Labor
  - Energy
  - Permit Fees
  - Compliance Testing
    All Maintenance &
  - Taxes

- Insurance
- Chemicals
- Discharge Fees
  - All Maintenance & Repair

#### **Operations Performed in Accordance to State Standards/Protocols**

## Living, Learning Laboratory



Active

R&D

"I think it also shows an important role the university can play in advancing sustainability and engaging in this idea of the campus as a living laboratory, a place of experimentation and engagement and learning.

This (facility) offers an interesting case study for how an institution can move a community toward a bold step in water conservation. It's also exactly the kind of reduction we need to see in order to support a more sustainable future."

Ciannat Howett, Director of the Office of Sustainability Initiatives at Emory

#### Multi-Functional Facility Serves as Educational Asset



*"It provided the experience of collecting real data, interpreting results and writing reports. For some students, it may have been the first hands-on lab experience that they've had."* 

"One of the things we talk about in class is the growing problem of water scarcity around the world — globally, we're running out of water. Water scarcity will be one of the defining issues during the lifetime of these students."

Christine Moe, Eugene J. Gangarosa Professor of Safe Water and Sanitation in the Rollins School of Public Health (RSPH) and Director of the Center for Global Safe Water at Emory



Innovative WaterHub Engages Power of Nature to Clean Wastewater



## EPA Administrator Gina McCarthy Tours Emory University's WaterHub



Gina McCarthy @GinaEPA · Feb 5

.@EmoryUniversity cut water use by ~35% w/new WaterHub, saving the school big on utility costs. A model for us all!

Gina McCarthy @GinaEPA · Feb 5

.@EmoryUniversity WaterHub isn't a typical treatment facility. It filters wastewater thru plant roots & microbes clean out organic material.





Federal Validation for an Ecological Solution to Wastewater Management

#### **EXTENDING THE LIFECYCLE OF WATER.**

## Nature's Idea. Our Science. QUESTIONS?

Jonathan Lanciani | Office: (804) 965-5590 | Mobile: (860) 604-0773 Jonathan.Lanciani@sustainablewater.com