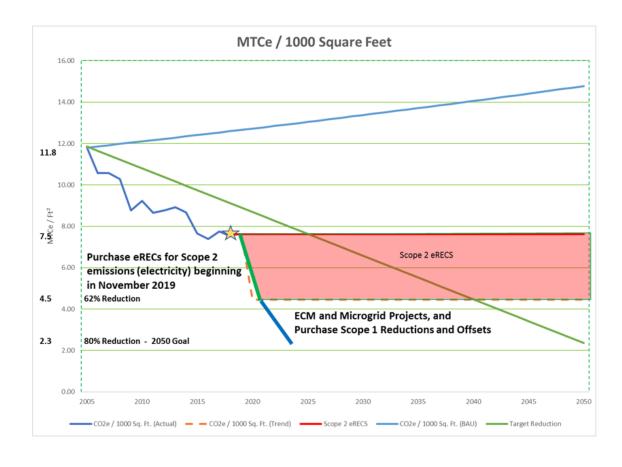
Not All Microgrids Are Created Equal: Northeastern University's Blueprint for Resiliency

Maria Cimilluca
Vice President for Facilities

Northeastern University

Robert Morin Senior Project Developer

Northeastern University

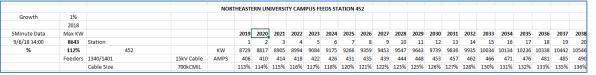

About Us:

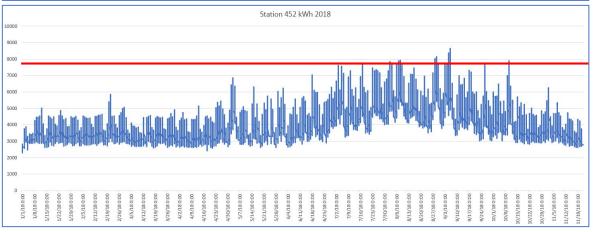
- Urban 70+ acre campus 8M GSF and growing
- Over 36,000 students across undergrad/graduate and growing
- Learning in action: Uniquely offering Experiential Learning
- Nearly \$180M in external research funding and growing

Northeastern's Energy and Resiliency Vision for the Future:

- Reduce 2005 carbon footprint by 80% by 2050 (More Sooner)
- Improve resiliency related energy supply interruptions
- Reduce operating costs and improve cash flow
- Research partnerships and student engagement
- Maintain or improve the University's financial strength & integrity

Carbon Reduction Roadmap:

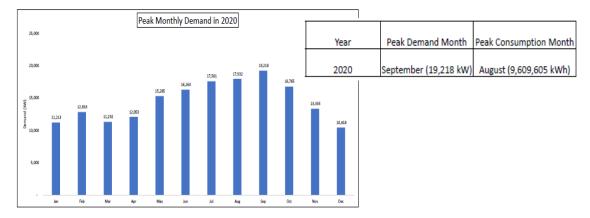


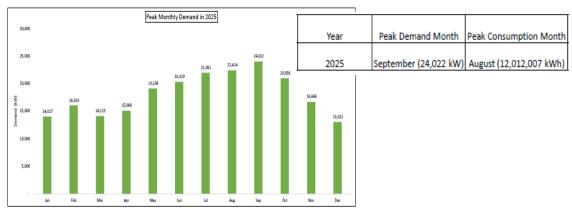


Energy Challenges

Electric Substation Capacity Issue

Substation Load Analysis: Eversource firm capacity limitation is being exceeded on one main campus feed – Forsythe





Campus Energy 2020 THE POWER TO CHANGE FEBRUARY 10-14 + SHERATON DENVER DOWNTOWN + DENVER, CO

Electric Peak Projections – 2020 and 2025

Advanced Energy Solutions Developed for Resiliency

Energy Efficiency

- Comprehensive energy conservation measures
- Reduces energy demand/use on campus

Onsite Energy Generation

- Solar PV system
- Turbine-based combined heat and power (CHP)

Battery Energy Storage

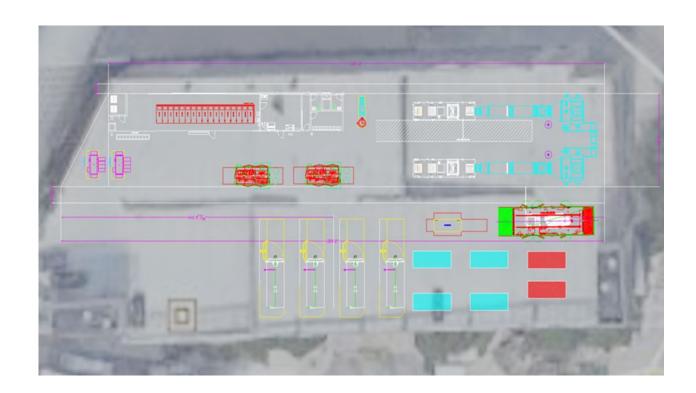
- Consumption of onsite generation
- Backup power/microgrid support

Microgrid

- Ties all elements together
- Enables stored power supply when the local grid goes down

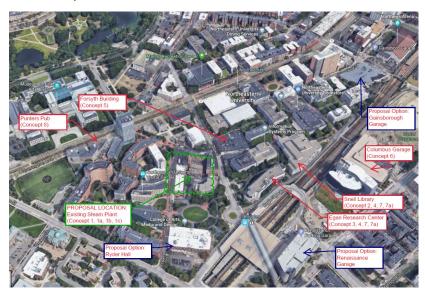
Microgrid Project – Needs and Benefits

- Implements part of the Carbon Reduction Roadmap
- Increases the electrical capacity and reliability of the campus infrastructure
- Reduces annual utility operating costs
- Addresses electric and steam deferred maintenance needs
- Improves the resiliency of the University's utility infrastructure
- Frees valuable campus real estate



Microgrid Project – Description

- Two (2) 4.6 MW Cogeneration Gas Turbines
 - ISO Dispatch/Ancillary Services
 - Island Mode Capable
- 32,000 Lb/Hr Heat Recovery Steam Generator
- Electrical Substation Upgrades Throughout Campus
- New Boilers and Steam Improvements
- 2MW/3MWh Battery System and Resiliency Improvements
- ~2MWdc solar PV
- Living Learning Lab



Location Analysis

Multiple Tasks, Many Skill Sets

- Matrix of Locations (12+ Sites over 12+ months)
- Structural Analysis
- Proximity to Fuel
- Campus Steam Infrastructure
- Campus Electric Infrastructure

Criteria & Constraints

- Economics
- Campus and Academic Disruption
- Operations and Maintenance
- Campus Resiliency

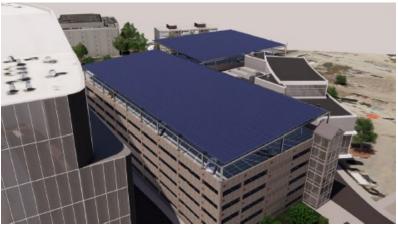
Northeastern University CHP Plant Location Decision Matrix		Concept 1	Cone ept la	Concept 1 b	Concept 1c	Concept 2	Concept 3	Concept 4	Come apt 5	Concept 6	Concept 7	Concept 7a	Come ept 8
Factors	Importance (0-10)	Retrofit of Old Steam Plant (Base)	Steam Plant Expansion with 2nd Level	Connect to Veolia Steamto Allow In-sits Replacement of SteamPlant	New Plant in North Alcove of Steam Plant	w Plant on tell Library	New Plant on Eg an Research Center	New Plant on Both Snell & Egan	New Plant on Forsyth Building	New Plant on Columbus Parking Garage	Decentralized Steam Plant with Expanded CHP Plant	Decentralized Steam Plant with New CHP Plant	Punten Pub
m ovativenes s	10	3	3	2	2	3	3	3	3	3	2	2	2
ducational Programs and Opportunities	10	2	3	2	3	1	1	1	3	2	1	1	1
arbon Impact	10	2	2	2	2	2	2	2	2	2	2	2	2
te access for plant O&M (loading dock, freight elevator, etc.)	10	3	3	2	1	2	2	2	3	2	2	2	1
ccess to underground oil storage area	10	3	3	3	3	1	1	1	2	1	1	1	1
afficient s pace for central plant equipment and future expans ion	10	1	3	2	2	2	2	2	2	3	1	1	1
tructural feas bility of concept	10	2	2	2	3	2	2	2	1	2	2	2	2
the access to existing a team/condensate distribution system	10	3	3	2	3	1	1	1	2	1	2	2	1
te access to existing central plant natural gas service	10	3	3	3	3	1	1	1	2	1	2	2	1
ite access to existing electrical distribution system	10	3	3	3	3	1	1	1	2	1	2	2	1
otential building academic dispution during project construction	10	3	3	1	2	1	1	1	1	3	2	2	3
is reption to existing central plant operations during ons truction	10	2	3	2	2	3	3	3	3	3	2	2	3
aproved Resiliency to Campus Steam System	10	3	3	2	2	2	2	2	3	3	3	3	2
aproved Resiliency to Campus Electrical System	10	3	3	3	3	3	3	3	3	3	3	3	3
nergy and Cost Savings	10	3	3	2	2	2	2	2	2	2	2	2	2
ost of Implementation	10	3	2	2	1	1	1	1	0	0	0	0	0
TOTAL		420	450	350	370	280	280	280	340	320	290	290	260
		420	450	350	370	280	290	280	340	320	290	290	260

Solar PV Opportunities

Review of on-site PV potential ongoing

- Primary opportunities: Columbus Garage and Curry Student Center
- Additional considerations: Cabot Center & Barletta Natatorium, Snell Library, and Marino Center

Site	DC Capacity (kW)	kWh/Year	System Type
Curry Student Center	136.1	171,951	Rooftop
Cabot/Barletta	750.0	881,111	Rooftop
Snell Library	189.2	229,784	Rooftop
Marino Center	243.4	295,695	Rooftop
Columbus Garage	625.0	735,625	Carport Canopy
All Sites	1,943.7	2,314,166	



Solar PV Opportunities – Columbus Renderings

Research and Education Partnerships

- Leverage partnerships to implement a research and development program that leverages EMS with the integrated distributed energy systems
- Vision to build a simulation platform to allow students and faculty to simulate, analyze and research a wide variety of use cases in the distributed energy management domain

Three Pillars of Research Partnerships

Microgrid Energy Solution – Grid Operation Research Platform

A Research Platform for Integrated

Smart Distribution Grid Operation

University as a Living Learning Lab – Smart City Research Platform

Smart Campus Energy Management with

Clean Technology & Electric Economy

Engineering & Training Program Enhancements

Certification Program Development —

Work Force Training on GE Technologies

Questions?

Thank You!

Maria Cimilluca

Vice President for Facilities
Northeastern University

m.cimilluca@northeastern.edu

Robert Morin

Senior Project Developer
Ameresco

rmorin@ameresco.com

