The University of Texas Roadmap for Cooling System Improvements

JUAN M. ONTIVEROS, P.E.

AVP - UTILITIES, ENERGY AND FACILITIES MANAGEMENT

JESSE OHM, P.E.

SENIOR OPERATIONS ENGINEER

OPTIMUM ENERGY

Agenda

- Background of Chilled Water System
- Review of Early Optimization Efforts
- Current Status of System
- Targeted Approaches Used

UT's Chilled Water System

- 60,000 tons of capacity
- 5 chilled water plants
- 18 electrical centrifugal chillers (2,500 to 5,000 tons)
- 18 miles of loop piping
- 3.6 MG, 36,000 ton hour & 5.5 MG, 55,000 ton hour thermal storage tanks
- Nearly 200 connected loads
- Over 200 loop valves
- 35 primary chilled water pumps
- Variable primary pumps in plants
- Variable secondary pumps in buildings

Operations at a Glance

- Peak Cooling Load 36,000 Tons
- Peak Chilled Water Flow 45,000 gpm
- Average Supply Temperature 39°F
- Average Return Temperature 49°F
- Average Supply Pressure at Plants 100 psig
- Peak Supply Pressure at Plants 125 psig
- Total Annual Production 137,000,000 Ton-Hours
- Total Annual Power to Plants 80,000,000 kWh

Chilled Water System Roadmap

- Started with Power Plant Optimization
- Linked Chilled Water System to Optimization
- First all VFD cooling plant in 2007
- Learned the value of primary pumps in 2009
 - Used Termis (real time model) to investigate DP reduction
- Used OE to link plants to loop optimization

Pressure Gradients [TONS]

10.0	7:	3
7.0	10.0	2
3.0	7.0	2
1.0	3.0	2
	1.0	1

DP Reduction History

The Foundation of UT's Optimization

Step 1: CS6 – Master DP Control

Step 2: CS7 – Sweet Spot Optimization

Step 2: CS7 – Sweet Spot Optimization

Step 3: CS7 – Maximize Output

Step 4: TES Discharge

Step 5: CS5 - Flow Control (imitate CS6)

Step 6: CS3 – Flow Control (maximize CS Chiller output while keeping CS6 at 12,500 tons)

Step 7: Campus Chiller Shed (excess tons)

UT Austin Campus Chillers								
	Tons	Desired Max Tons	Excess Tons	CHW Flow	Availability	CHWST		
CS6		4266.0 Tons						
CH6.1	2935.2 Tons	4333.0 Tons	1390.0 Tons	5,817.0 gal/min	true	39.5 °F		
CH6.2	2840.7 Tons	4333.0 Tons	1484.0 Tons	5,710.0 gal/min	true	39.6 °F		
CH6.3	2954.2 Tons	4333.0 Tons	1392.0 Tons	5,953.0 gal/min	true	39.5 °F		
C53		0.0 Tons						
CH3.1	0.0 Tons	5500.0 Tons	0.0 Tons	0.0 gal/min	true	42.5 °F		
CH3.2	0.0 Tons	3500.0 Tons	0.0 Tons	0.0 gal/min	true	53.3 °F		
СН3.3	0.0 Tons	3500.0 Tons	0.0 Tons	0.0 gal/min	true	49.8 °F		
CS5		0.0 Tons						
CH5.1	0.0 Tons	4000.0 Tons	0.0 Tons	4.0 gal/min	true	41.1 °F		
CH5.2	0.0 Tons	4000.0 Tons	0.0 Tons	0.0 gal/min	false	0.0 °F		
CH5.3	0.0 Tons	5000.0 Tons	0.0 Tons	0.0 gal/min	false	0.0 °F		
CS	4		0.0 Tons					
CH4.1	0.0 Tons	0.0 Tons	0.0 Tons	0.0 gal/min	BOP Only	0.0 °F		
CH4.2	0.0 Tons	3000.0 Tons	0.0 Tons	0.0 gal/min	BOP Only	0.0 °F		
CH4.3	0.0 Tons	3000.0 Tons	0.0 Tons	2.0 gal/min	BOP Only	0.0 °F		
TES								
TES1	0.0 Tons	0.0 Tons	0.0 Tons	0.0 gal/min	true	0.0 °F		

 4549.0 Tons
 0.0 Tons
 =
 0.0 Tons
 > 500

 Sum Excess Tons
 - Max Tons (Non CS6)
 - Max Excess Tons (Non CS6)
 = Shed Event Tons
 > 500

Buildings – reducing DP and temperatures

High delta T Syndrome?

- Prior to 2010 Campus delta T used to average between 7.5 and 11.5 deg F with maximum flow requirement of 70,000 gpm (12 deg F delta T)
- CS5 and CS6 were installed with no low flow chilled water bypass
- 2017 maximum flow requirement is 45,000 gpm (19.2 deg F delta T)
- Chillers are going into minimum flow control (campus pressures increase)
- Possible Solutions we are debating
 - Increase chilled water set point from 39 deg F to 42 deg F
 - Decrease minimum flow to 2 ft/sec in evaporators

JUAN M. ONTIVEROS, P.E.

AVP – UTILITIES, ENERGY AND FACILITIES MANAGEMENT

BEN ERPELDING, P.E., CEM
CHIEF TECHNOLOGY OFFICER
OPTIMUM ENERGY

