

Insurance Perspective: Energy Resilience

Energy Master Planning for Resilient Communities National Academy of Sciences Washington, DC

Wednesday, December 6, 2017 David R. Tine

Returning to Routine

Frequency/Severity/ Threat

Insurance Perspective

- Insurance companies are central to the revitalization efforts of communities and businesses as they respond to the effects of natural disasters.
- Two models utilized from the perspective of risk mitigation and insurance:
 - Blackout Risk Modeling
 - Microgrid Reliability Model

"How Reliable is Your Microgrid" by Richard Jones, Public Utilities Fortnightly, July 2015

Blackout Risk Model™

Focuses on the U.S. power grid and incorporates extensive data on four peril categories: Hurricanes, winter storms, thunderstorms, and equipment failure or operator error. Wild fires and terrorism attack loss scenarios can also be tested. This includes:

- Severe weather events
- Electrical grid
- Tree proximity to power lines

Blackout Risk Model™ Hurricane Outage Duration, 5yr return per., 2.47 days average

Blackout Risk Model™ Hurricane Outage

Blackout Risk Model™ Hurricane Outage Population, 5yr return per., 7,716,839 people impacted

Blackout Risk Model™ Hurricane Outage Population, 100yr return per., 25,095,957 people impacted

Blackout Risk Model™ Winterstorm Outage Duration, 5yr return per., 1.92 days average

Blackout Risk Model™ Winterstorm Outage Duration, 100yr return per., 6.45 days average

Blackout Risk Model™ Winterstorm Outage Population, 100yr return per., 15,206,691 people impacted

Notional Loss Analysis

- Assume \$10 Mil of annual BI exposure in all US zip codes
 - This could represent 1 \$10 Mil exposure or several smaller exposures totaling \$10 Mil.
- 24 hr. waiting period / deductible
- Return period is probability of occurrence
 - i.e. 5 yr is 20% chance in one year
 - i.e. 100 yr is 1% chance in one year

Return		
Period	Hurricane	Winterstorm
1000	\$318,000,365	\$597,849,489
500	\$284,026,307	\$521,753,166
250	\$247,325,162	\$418,962,302
100	\$192,864,230	\$276,838,550
50	\$149,479,089	\$199,762,238
25	\$107,578,614	\$152,285,187
5	\$40,806,485	\$57,925,226
Average	\$32,514,423	\$48,460,274

Hurricane Harvey Power Outages Peril Considerations – Flood vs Wind

Munich RE applications NATHAN & natcatService

Loss events in North America 1980 – 2016

Geographical overview (including Caribbean and Central America)

Source: Munich Re NatCatSERVICE

Valuing Resilience: Risk Considerations

- 1. Risk Modifiers for loss prevention activities
 - a) A robust, fast response repair program has a major risk reduction effect for both availability and lost production risk.
 - b) Energy storage has a risk reduction benefit.
- Weather influences need to be considered during design and construction specifications.
- 3. A Performance Risk Analysis Model can help direct resources to the major risk drivers.
- 4. Standard property insurance is prudent but system performance insurance may help in funding if performance can be related to revenue.

CONTACT INFO

David R. Tine

Tel. 860 722 - 5749

eMail: david_tine@hsb.com

Appendix- MunichRe Topics GEO

Appendix - Standard Insurance Coverage:Loss Valuation

Equipment Breakdown

Business Income Extra Expense

Spoilage Damage
Utility Interruption

Appendix: typical risk model results NY Prize Microgrid: illustration only

Energy Storage (ESS) Duration of 2 Hours – For this situation (modeled in this case only) ESS has significantly less value risk reduction value than the Component Repair Strategy

There is ~ 10% chance that the annual availability will be < 99.96%.

There is ~ 40% chance that the annual Lost Kwh will be < 100.