

DESIGN BUILD CONSTRUCTION STREAMLINING DG & CHP BASED MICROGRIDS

Introduction

How to <u>BUILD</u> a Microgrid that meets a facility's <u>GOALS</u> with their available <u>MEANS</u>

- Project Goals
- Contract Structures
- Managing Risk
- Example Projects

Common Project Goals

- Resilient
- Energy Savings/Sustainability
- Minimal Capital Cost
- Increase Capacity
- Short Schedule
- High Quality Performance
- Minimum Impact on Operations

Goals need to be <u>DEFINED</u> & <u>PRIORITIZED</u> to create a successful project structure

Contract Structures

Design, Bid, Build

- Facility owner or program manger is responsible for managing engineering, bid process (equipment & construction), and construction manager separately
- o Facility owns assets when project is complete
- Long schedule, low first cost, high owner risk
- Traditional EPC (Engineering, Procurement and Construction)
 - Facility owner or program manger is responsible for defining project scope for bidding
 - EPC Contractor is responsible for detailed design, equipment procurement & construction
 - o Facility owns assets when project is complete
 - Possible shorter schedule, more first cost for owner, less owner risk
- DBOOM (Design, Build, Own, Operate and Maintain)
 - Little owner involvement
 - DBOOM takes full responsibly of defining scope, detailed design, construction, asset ownership, operation and maintenance
 - Faster schedule, higher first cost or lower savings, lowest owner risk

Managing Risk

Safety Schedule Costs Performance

Facility Owner Separate Contractors

EPC

Safety Schedule Costs Performance

Facility Owner EPC Contractor

DBOOM

Safety Schedule Costs Performance

Facility Owner DBOOM Contractor

Villanova University

1 800 443 8087

- **Private Catholic University**
- 10,000+ Undergraduate Students
- **February 2014 Ice Storm**
 - Campus completely lost utility power
 - Closed campus, sent students home
 - Major cost implications

Villanova, Pennsylvania

Villanova Goals

- Low Project Cost
- Increase Campus Resiliency
- Min. Impact on Campus Operations
- Fast Schedule
- Energy Savings

Low Project Cost

- Fully Financed By Developer Through Energy Savings
 - o Villanova Did Not Fund Project \$0
 - o Demand Management Strategy Reduces Utility Costs
 - o Shared Energy Savings
 - o CHP Grant for 1 Unit
- Simple Design
 - o Prepackaged Units Limit Field Labor
 - o Limited Run Hours to Avoid SCR
 - o Minimal Impact on Campus Utilities

Increase Campus Resiliency

- Installed 3 (2MWe) Reciprocating Engine Generators
 - o Lean Burn Natural Gas
 - o 1x CHP Unit Produces Steam
 - o 2x Simple Cycle Unit

Annual Electrical Demand (Daily Min. Average & Max.)

Increase Campus Resiliency

Minimal Impact on Campus Operations

- Equipment is Owned by Project Developer
 - o Villanova is Not Responsible for O&M
 - o Automatic Engine Dispatch
- Minimal Boiler Plant Impact
 - o Simple Operation

Fast Schedule

- Financing Required Summer 2018 Startup
- Contract Signed November 2017
- Long Lead Items (Long Tent Poles)
 - o Major Equipment Fabrication
 - o Utility Interconnect Agreement
 - o Air Permit
 - o Engineering
 - o Installation

Very Fast Schedule

- Design-Build Approach
 - o Engineering
 - o CM at Risk
 - o Start-Up, Cx

Energy Savings

- 6 MW Demand Management
 - o Capacity Savings
 - o Transmission Savings
- 2 MW CHP Unit Operates 24/7
 - o 3,250 pph Steam Capacity
 - o 120 psig

Lessons Learned

- Understanding Project Goals is Key
- Include Operations Staff Early in Process
- Identify & Plan for Construction Unknowns
- QA/QC is Vital Throughout Project
- Testing

Closing Remarks

Questions

