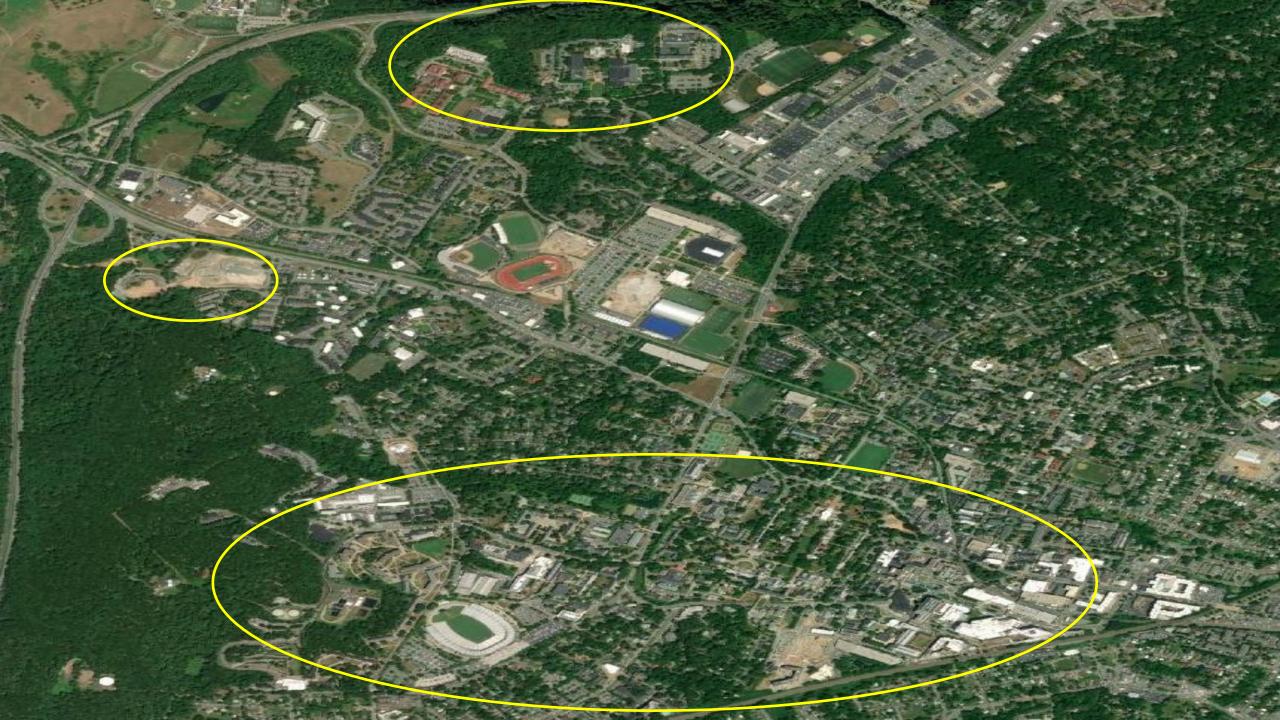
### **Campus Energy 2021** BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16


## Three Applications of Heat Recovery Chillers Supporting LTHW at UVA

Paul Zmick, PE University of Virginia











### Three plants and three unique applications ...

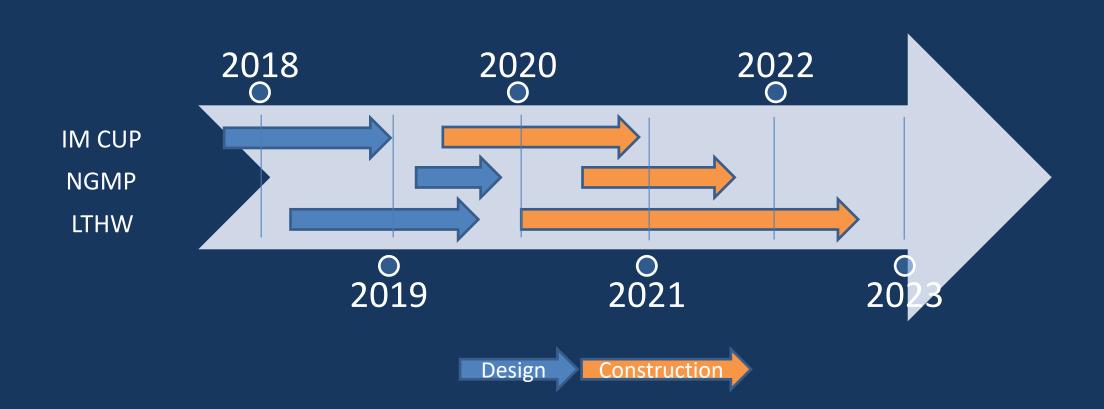
- Small ... Ivy Mountain (CUP) ... 200K SQFT
  - New development zone
  - 200K outpatient orthopedic clinic
  - 60-80K future capacity
- Medium ... North Grounds (NG Mechanical Plant) ... 1M SQFT
  - 550K existing buildings and 450K new load
  - 190K new Inn at Darden
  - 260K existing Darden School of Business
- Large ... Academic Grounds (Main Heat Plant) ... 12M SQFT
  - 12M of existing academic, historic, research, athletic, and health system buildings

### **Engineers of Record and Vendor Partners**

• Collin Moyer, PE



• Joe Witchger, PE





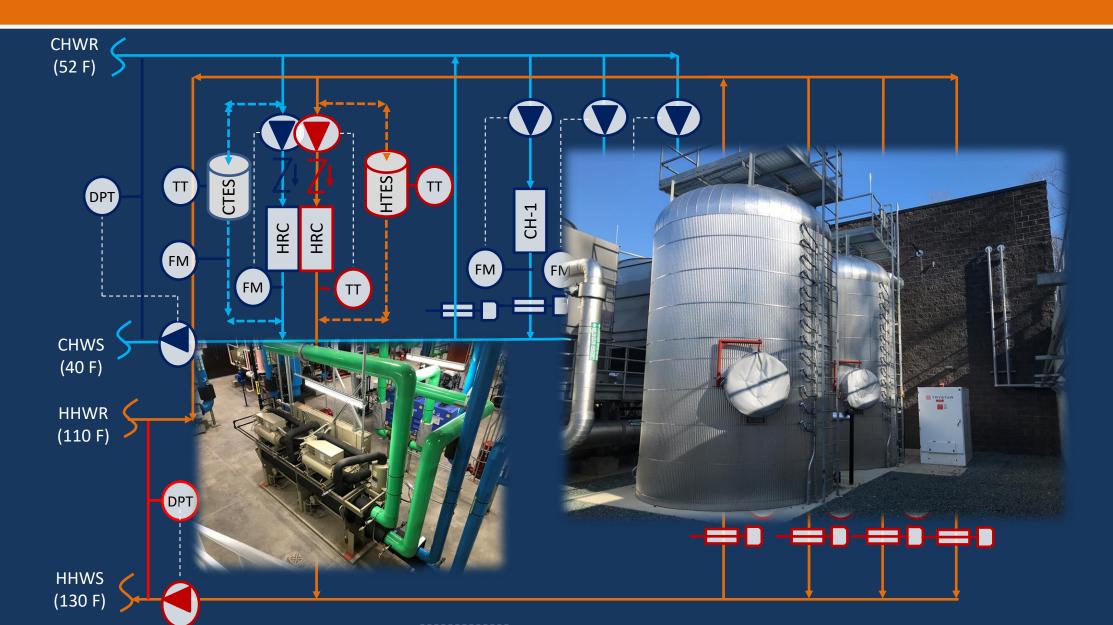

George Howe, PE  $\bullet$ 



### Timeline of each project

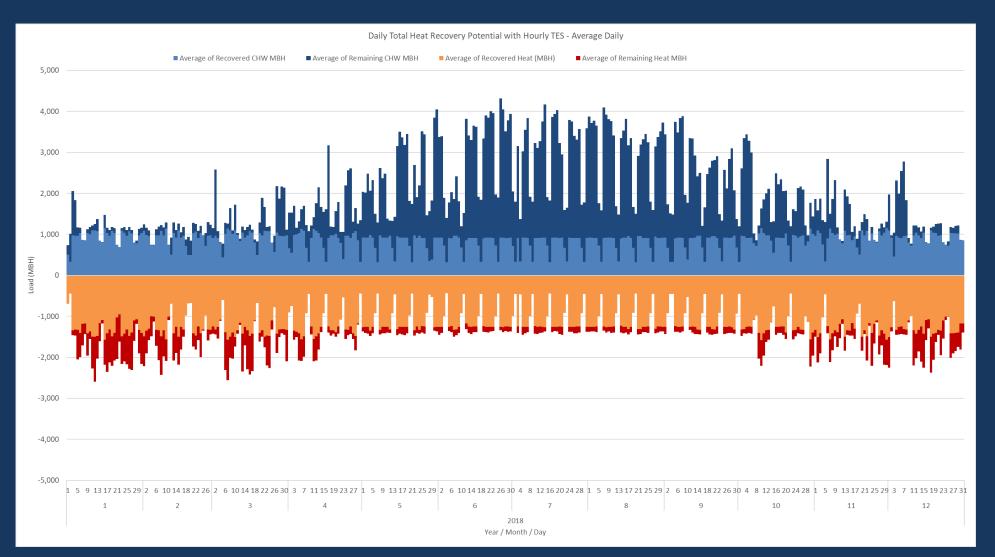


### Ivy Mountain CUP


- Maximize HRC in order to minimize FF (gas boilers)
- New construction with nominal 140F heating supply
- Periods of low system heating/cooling load
- Small plant with future capacity requirements
- Tight budget
  - Proposed at \$16M ... increased to \$19M due to high construction demand
  - HRC were actually a VM discussion

### Equipment Basis of Design – HRC

#### • Manufacturers: Trane, Carrier, York/JCI

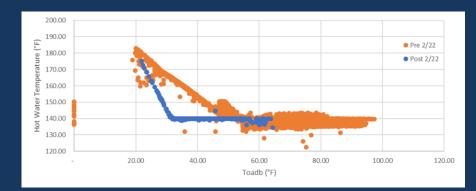

| Criterion                                      | Multistack<br>Modular<br>Chiller | York YCWL<br>Scroll Chiller | JCI/Sabroe<br>ChillPAC<br>Recip. Chiller | York YVWA<br>Screw Chiller | Trane RTWD<br>Screw Chiller | Carrier 30XW<br>Screw Chiller |
|------------------------------------------------|----------------------------------|-----------------------------|------------------------------------------|----------------------------|-----------------------------|-------------------------------|
| \$/MBH                                         | \$80                             | \$45                        | -                                        | \$53                       | \$61                        | \$41                          |
| Heating Capacity (MBH)                         | 2,012                            | 1,870                       | -                                        | 1,980                      | 1,800                       | 1,840                         |
| Cooling Capacity (Tons)                        | 120                              | 112                         | -                                        | 121                        | 110                         | 115                           |
| Combined Heating/Cooling COP                   | 6.1                              | 6.2                         | - (                                      | 6.7                        | 6.4                         | 6.3                           |
| Refrigerant                                    | R-410A                           | R-410A                      | R-717<br>(Ammonia)                       | R-134A                     | R-134A                      | R-134A                        |
| Footprint (SF)                                 | 29                               | 30                          | 31                                       | 66                         | 40                          | 41                            |
| Tonnage Range                                  | 20-400                           | 50-200                      | 30-400                                   | 120-300                    | 80-250                      | 150-400                       |
| Maximum HHW Temp. (Deg F)                      | 140                              | 122                         | -                                        | 140                        | 140                         | 140                           |
| Noise (dBA)                                    | 75                               | 77                          | 74                                       | - (                        | 73                          | -                             |
| Number of Compressors                          | 4                                | 4                           | 1                                        | 1                          | 2                           | 1                             |
| Refrigerant Charge (lbs)                       | 130                              | 390                         | 60                                       | 395                        | 360                         | 290                           |
| Ability for Capacity Increase                  | Easy                             | Difficult                   | Difficult                                | Difficult                  | Difficult                   | Difficult                     |
| Operability at Low Loads                       | Good                             | Good                        |                                          | Fair                       | Fair                        | Fair                          |
| Ability to Operate with Low<br>CHW/HHW Delta-T | Poor                             | Fair                        | -                                        | Fair                       | Fair                        | Fair                          |

### Sequence of Operation

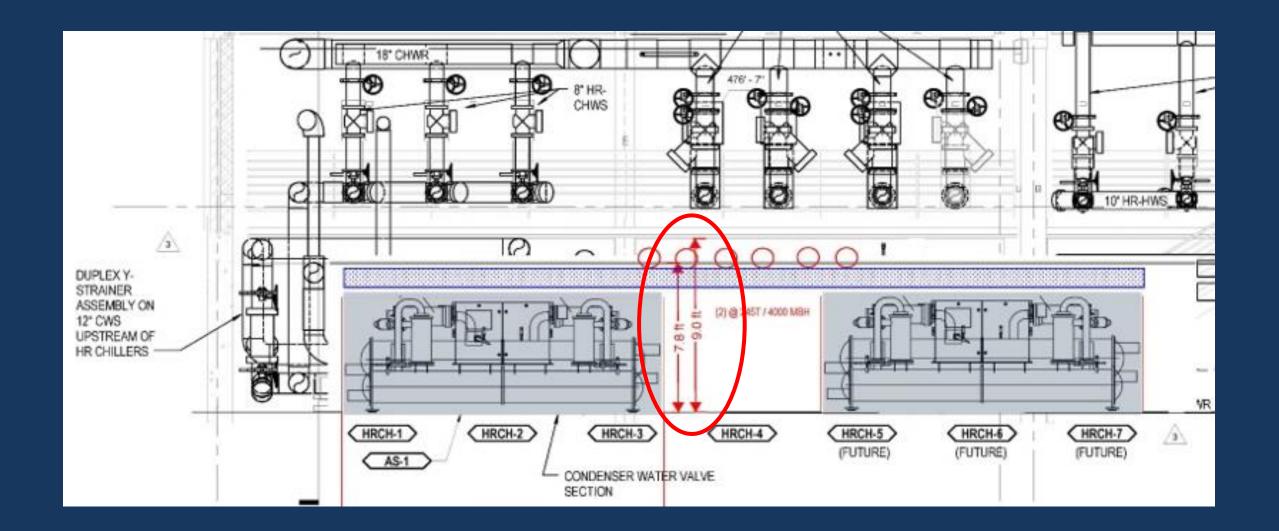


### **Expected Load Profile**

#### 120 Ton HRC with TES - 83% of annual heat recovered




## Ivy Mountain CUP




### North Grounds Mechanical Plant

- Maximize HRC in order to minimize FF (gas boilers)
- Mix of existing and new construction
- Waterside economizer inherited and encouraged
  - Darden: Existing
  - Inn at Darden: New
- Existing buildings required winter heating temp setback up to 180F
- Existing mechanical plant with limited space

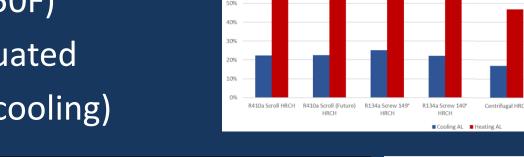


### Vertical space ... very challenging



### Engageable Load Ratio

#### NGMP ONLY (BASED ON 2018 DATA)


|       | Ideal HRCH R410a Scroll HR |              | Da Scroll HRC | н          | R410a Scroll (Future) HRCH R134a Screw 1 |                                   |                  | Screw 149° HRCH R134a Screw 140° HRCH |                                    |     | R134a Scroll 160° HRCH |                                   |     | R134a Scroll 165° HRCH |                                   | Centrifugal HRCH |                              |                                   | Ammonia HRCH |                              |                                   |     |                                |                                   |     |                              |                                   |                  |
|-------|----------------------------|--------------|---------------|------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------|------------------------------------|-----|------------------------|-----------------------------------|-----|------------------------|-----------------------------------|------------------|------------------------------|-----------------------------------|--------------|------------------------------|-----------------------------------|-----|--------------------------------|-----------------------------------|-----|------------------------------|-----------------------------------|------------------|
|       |                            | Total Load   |               | Load Ratio | Achievable<br>Load (MBTU)                | Achievable<br>Load Ratio<br>(ALR) | η <sub>elr</sub> | Engageable<br>Load<br>(MBTU)          | A chievable<br>Load Ratio<br>(ALR) |     |                        | Achievable<br>Load Ratio<br>(ALR) |     | Load                   | Achievable<br>Load Ratio<br>(ALR) |                  | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |              | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |     | Engage ab le<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |     | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) | η <sub>elr</sub> |
| Total | Cooling                    | 32,907,356   | 11,571,582    | 35%        | 8,385,310                                | 25%                               | 87%              | 8,385,310                             | 25%                                | 87% | 7,449,500              | 23%                               | 79% | 8,016,255              | 24%                               | 84%              | 6,839,703                    | 21%                               | 81%          | 6,881,533                    | 21%                               | 81% | 1,401,071                      | 4%                                | 149 | 6 736,800                    | 2%                                | 9%               |
| TOLAT | Heating                    | 30,685,875   | 11,583,153    | 38%        | 11,739,434                               | 38%                               |                  | 11,739,434                            | 38%                                |     | 10,790,085             | 35%                               |     | 11,404,360             | 37%                               |                  | 11,868,924                   | 39%                               |              | 11,868,152                   | 39%                               |     | 1,944,754                      | 6%                                |     | 1,303,522                    | 2 4%                              |                  |
| Toa < | Cooling                    | -            | -             | 0%         | -                                        | 0%                                | 0%               | -                                     | 0%                                 | 0%  | -                      | 0%                                | 0%  | -                      | 0%                                | 0%               | - i                          | 0%                                | 0%           | -                            | 0%                                | 0%  | -                              | 0%                                | 09  | 6 -                          | 0%                                | 0%               |
| 50°F  | Heating                    | 15, 199, 926 | -             | 0%         | -                                        | 0%                                |                  | -                                     | 0%                                 |     | -                      | 0%                                |     | -                      | 0%                                |                  | -                            | 0%                                |              | -                            | 0%                                |     | -                              | 0%                                |     | -                            | 0%                                |                  |
| Toa > | Cooling                    | 32,907,356   | 11,571,582    | 35%        | 8,385,310                                | 25%                               | 87%              | 8,385,310                             | 25%                                | 87% | 7,449,500              | 23%                               | 79% | 8,016,255              | 24%                               | 84%              | 6,839,703                    | 21%                               | 81%          | 6,881,533                    | 21%                               | 81% | 1,401,071                      | 4%                                | 149 | 6 736,800                    | 2%                                | 9%               |
| 50°F  | Heating                    | 14,935,419   | 11,583,153    | 78%        | 11,739,434                               | 79%                               |                  | 11,739,434                            | 79%                                |     | 10,790,085             | 72%                               |     | 11,404,360             | 76%                               |                  | 11,868,924                   | 79%                               |              | 11,868,152                   | 79%                               |     | 1,944,754                      | 13%                               |     | 1,303,522                    | 2 9%                              |                  |

#### NGMP & DARDEN (BASED ON 2018 DATA)

|       | Ideal HRCH |            | HRCH       | R410       | a Scroll HRC | Ŧ                                 | R410a S | croll (Future) | HRCH                               | R134a | a Screw 149° HRCH R134a Screw 140° HRCH R134a Scroll 160° HRCH |                                   | RCH  | R134a Scroll 165° HRCH        |                                   |     | Centrifugal HRCH             |                                   |      | Ammonia HRCH                 |                                   | н    |                                |                                   |     |                              |                                   |                  |
|-------|------------|------------|------------|------------|--------------|-----------------------------------|---------|----------------|------------------------------------|-------|----------------------------------------------------------------|-----------------------------------|------|-------------------------------|-----------------------------------|-----|------------------------------|-----------------------------------|------|------------------------------|-----------------------------------|------|--------------------------------|-----------------------------------|-----|------------------------------|-----------------------------------|------------------|
|       |            | Total Load |            | Load Ratio |              | Achievable<br>Load Ratio<br>(ALR) |         |                | A chievable<br>Load Ratio<br>(ALR) |       | Engageable<br>Load<br>(MBTU)                                   | Achievable<br>Load Ratio<br>(ALR) |      | Engage able<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |     | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |      | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |      | Engage ab le<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) |     | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) | η <sub>elr</sub> |
| Total | Cooling    | 67,610,850 | 27,594,282 | 41%        | 19,394,837   | 29%                               | 84%     | 19,404,445     | 29%                                | 84%   | 19,913,979                                                     | 29%                               | 88%  | 19,046,224                    | 28%                               | 84% | 6 17,262,693                 | 26%                               | 86%  | 17,975,202                   | 27%                               | 89%  | 15,744,882                     | 23%                               | 689 | 6 8,908,800                  | 0 13%                             | 45%              |
| Total | Heating    | 50,007,874 | 27,621,877 | 55%        | 27, 154,095  | 54%                               |         | 27,166,222     | 54%                                |       | 28,845,438                                                     | 58%                               |      | 27,096,191                    | 54%                               |     | 29,963,122                   | 60%                               |      | 31,000,652                   | 62%                               |      | 21,854,672                     | 44%                               |     | 15, 761, 152                 | 2 32%                             |                  |
| Toa < | Cooling    | 5,113,346  | 4,940,063  | 97%        | 2,721,174    | 53%                               | 66%     | 2,721,174      | 53%                                | 66%   | 4,079,115                                                      | 80%                               | 101% | 2,671,393                     | 52%                               | 65% | 6 3,909,988                  | 76%                               | 108% | 4,253,898                    | 83%                               | 117% | 3,688,582                      | 72%                               | 899 | 6 2,239,200                  | 0 44%                             | 63%              |
| 50°F  | Heating    | 24,769,374 | 4,945,003  | 20%        | 3,809,644    | 15%                               |         | 3,809,644      | 15%                                |       | 5,908,848                                                      | 24%                               |      | 3,800,469                     | 15%                               |     | 6,788,346                    | 27%                               |      | 7,336,403                    | 30%                               |      | 5,119,929                      | 21%                               |     | 3,961,518                    | 3 16%                             |                  |
| Toa > | Cooling    | 62,047,637 | 22,225,078 | 36%        | 16, 296, 218 | 26%                               | 88%     | 16,305,826     | 26%                                | 88%   | 15,482,805                                                     | 25%                               | 85%  | 16,005,940                    | 26%                               | 87% | 6 13,027,759                 | 21%                               | 80%  | 13,384,646                   | 22%                               | 82%  | 11,762,655                     | 19%                               | 639 | 6,475,200                    | 0 10%                             | 40%              |
| 50°F  | leating    | 24,341,248 | 22,247,303 | 91%        | 22,816,029   | 94%                               |         | 22,828,156     | 94%                                |       | 22,426,634                                                     | 92%                               |      | 22,770,917                    | 94%                               |     | 22,610,738                   | 93%                               |      | 23,083,635                   | 95%                               |      | 16,327,149                     | 67%                               |     | 11, 455, 708                 | 3 47%                             |                  |

### ELR Continued ...

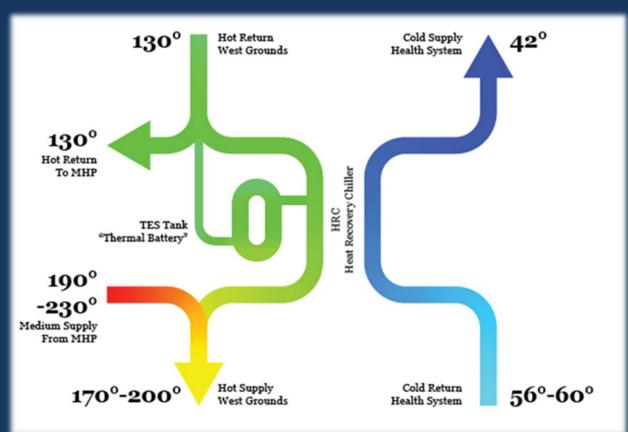
- Two senarios (existing load and new load)
- Two conditions (Toa <50F and >50F)
- Eight heat recovery chillers evaluated
  Two conditions (heating and cooling)
- York YVWA Selected
  - -149F
  - 200T
  - Three units

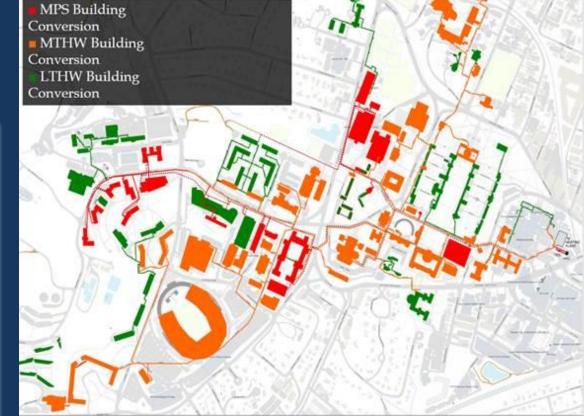


|       |         |                      | Ideal                        | HRCH                              | R134a Screw 149° HRCH        |                                   |                     |  |  |
|-------|---------|----------------------|------------------------------|-----------------------------------|------------------------------|-----------------------------------|---------------------|--|--|
|       |         | Total Load<br>(MBTU) | Engageable<br>Load<br>(MBTU) | Engageable<br>Load Ratio<br>(ELR) | Engageable<br>Load<br>(MBTU) | Achievable<br>Load Ratio<br>(ALR) | $\eta_{\text{ELR}}$ |  |  |
| Total | Cooling | 67,610,850           | 27,594,282                   | 41%                               | 19,913,979                   | 29%                               | 88%                 |  |  |
| Total | Heating | 50,007,874           | 27,621,877                   | 55%                               | 28,845,438                   | 58%                               |                     |  |  |
| Toa < | Cooling | 5,113,346            | 4,940,063                    | 97%                               | 4,079,115                    | 80%                               | 101%                |  |  |
| 50°F  | Heating | 24,769,374           | 4,945,003                    | 20%                               | 5,908,848                    | 24%                               |                     |  |  |
| Toa > | Cooling | 62,047,637           | 22,225,078                   | 36%                               | 15,482,805                   | 25%                               | 85%                 |  |  |
| 50°F  | Heating | 24,341,248           | 22,247,303                   | 91%                               | 22,426,634                   | 92%                               |                     |  |  |

#### **N**ELR = ALR / ELR

FHRE - All Toa


### LTHW Project ... North Chiller Plant/Main Heat Plant


- Maximize HRC in order to minimize FF (coal, gas, oil boilers)
- Integrating a large HRC with large steam and hot water boilers
- Minimum LTHW temp of 170F
- Source of year-round chilled water load and hot water load

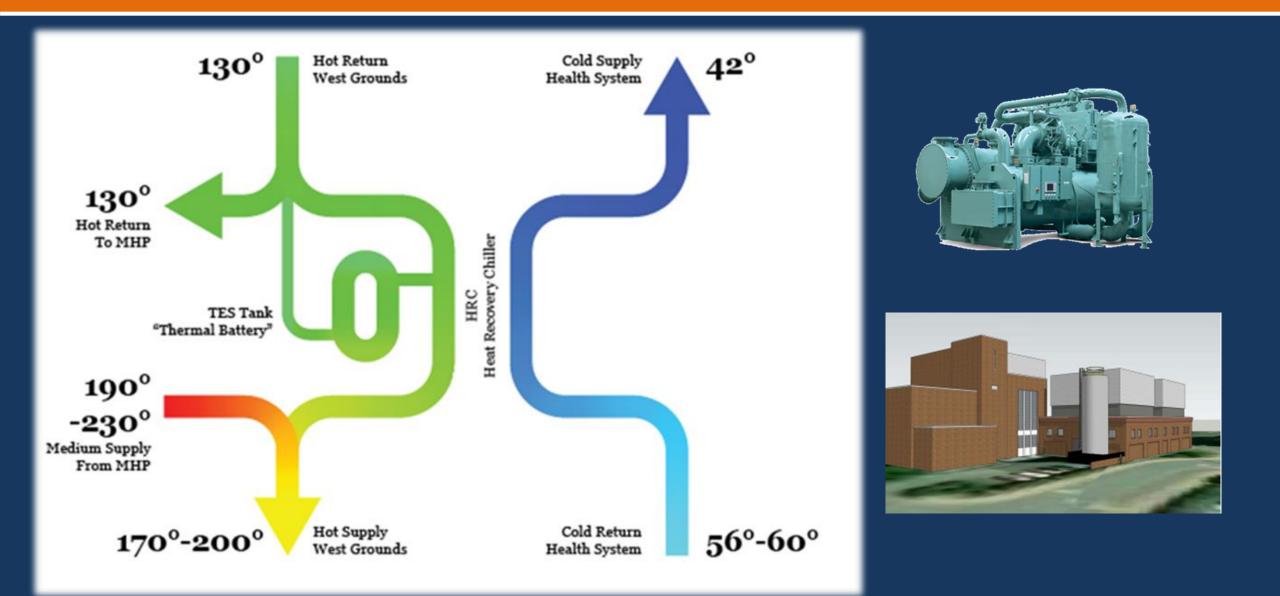


### LTHW Project

### 200F to 170F from the Plant

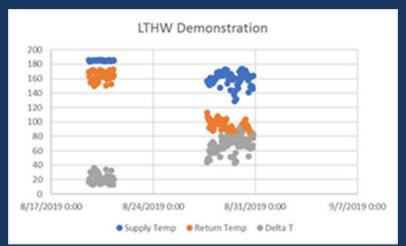


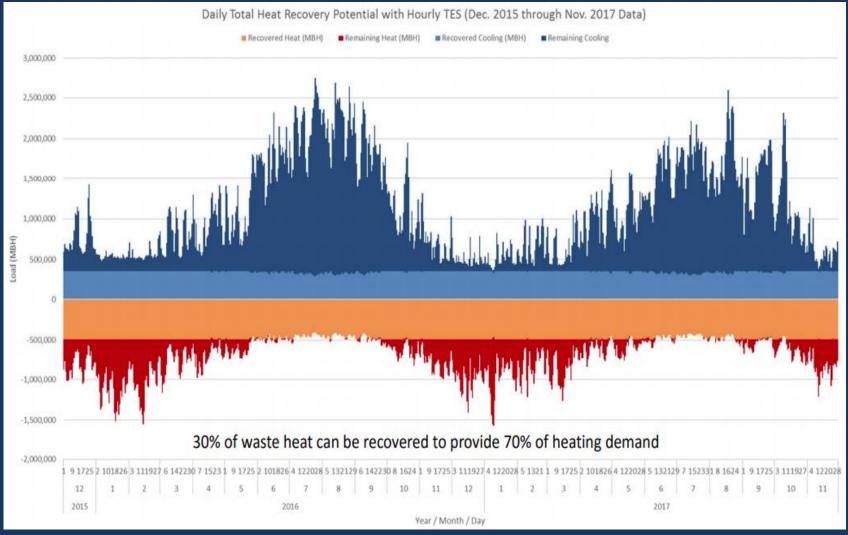



#### 170F to 160F in the Building

### Summary of HRC Options

- Lower temperatures provide more options
- Limited options for medium temperatures/size
- Very limited options for temperatures above 160F


| HRC               | Max Temp | Max Tons | CUP | NGMP | LTHW |
|-------------------|----------|----------|-----|------|------|
| York Scroll       | 122      | 112      | Х   |      |      |
| Multistack Scroll | 140      | 400      | х   |      |      |
| York Screw        | 140      | 300      | х   |      |      |
| Trane Screw       | 140      | 250      | Х   |      |      |
| Carrier Screw     | 140      | 400      | х   |      |      |
| York Screw        | 149      | 200      |     | Х    |      |
| Daikin Scroll     | 160      | 312      |     | Х    |      |
| ArcitChill Scroll | 165      | 25       |     | х    |      |
| York Centrifugal  | 170      | 2000     |     | Х    | Х    |
| York FE           | 180      | 5000     |     |      |      |
| NH3 Recip         | 195      | 200      | х   | Х    | х    |


### One 1,800 ton CYK and one 60K gal buffer tank



### Expected and Preliminary Results (HRC and LTHW)

- 30% recovered
- 70% of demand
- DT increase ...
  20 to 60+





### Summary of HRC Options

- Lower temperatures provide more options
- Limited options for medium temperatures/size
- Very limited options for temperatures above 160F

| HRC               | Max Temp | Max Tons | CUP | NGMP | LTHW |
|-------------------|----------|----------|-----|------|------|
| York Scroll       | 122      | 112      | Х   |      |      |
| Multistack Scroll | 140      | 400      | х   |      |      |
| York Screw        | 140      | 300      | х   |      |      |
| Trane Screw       | 140      | 250      | Х   |      |      |
| Carrier Screw     | 140      | 400      | х   |      |      |
| York Screw        | 149      | 200      |     | Х    |      |
| Daikin Scroll     | 160      | 312      |     | Х    |      |
| ArcitChill Scroll | 165      | 25       |     | х    |      |
| York Centrifugal  | 170      | 2000     |     | Х    | Х    |
| York FE           | 180      | 5000     |     |      |      |
| NH3 Recip         | 195      | 200      | х   | Х    | х    |

### **Process Steps**

- Understand heating/cooling load profile
- Establish discharge temp of HRC
- Maximize use of HRC
  - Buffer tank(s)
  - Water side economizing
- Fit the equipment to space/budget
- Three projects
  - Unique constraints
  - Unique outcomes



 $\mathbf{n}$  ELR = ALR / ELR





Compared and and a second and a second



### Special thanks to Cheryl Gomez

- Director of Operations at UVA
- Early adopter of HRCs, elimination of FF, and all things sustainable
- Driver for LTHW effort at UVA
- Strong supporter of IDEA and former board member
- My boss



# Questions?



Paul Zmick, PE





