KEEPING UP WITH DEMAND

PILOT PROJECT RESULTS FOR CHILLED WATER OPTIMIZATION IN NYC HEALTHCARE & CITY BUILDINGS

IDEA Annual Conference | June 2018

Define "Local"

What is the Process?

Owner Driven: NYC Research Hospital

- Large main campus in NYC with multiple regional locations
- Complimentary optimization strategies in various stages:
 - Conversion from Primary-Secondary to Variable-Primary pumping
 - Investigating CHW plant optimization packages
 - Installing data monitoring hardware/software
 - Operator continuing education & certification

Start Simple

Pilot project goal: Improve AHU discharge air temperature stability

- Initial solution: Install pressure independent CHW control
- 2010 Pilot project: 2x 100% OA AHUs, 20,000 CFM, 267 GPM each

• Results: Stabilized discharge air temperature control

2011 Follow up: 3x 100% OA AHUs, 130,000 CFM, 1,607 GPM each

- Results: Stabilized discharge air control w/in 0.2°F of setpoint
- Bonus: Improved overall system ΔT to ≥ 12°F coil design

Build on Success

New Building

- ✓ AHUs
- ✓ Simplified installation
- ✓ Precise control
- ✓ High ∆T

Partial Retrofit

- ✓ Terminal units
- ✓ Reduced flow
- ✓ Improved ΔT

Campus Retrofit

- **AHUs**
- Target ∆T
- Simplify installation

- ✓ AHUs
- ✓ Improved ΔT
- ✓ Reduced elec. demand

New Building

- All Equipment
- Simplify installation
- □ Precise control
- □ High ∆T

Small Retrofit Next Gen. Tech

- □ AHUs
- □ Improve ΔT
- Continuous commissioning
 - Data analytics

Partial Retrofit

- ✓ AHUs
- ✓ Improved DAT control
- ✓ Improved ΔT

Hospital Results

- Higher campus delta T
- Lower peak load and fewer running chillers
- Increased "export" capability between different plants
- More effective plant optimization
- Simplified commissioning

Current Assessment

- Next generation technology assessment follows similar progression
- Higher resolution data provides more in-depth analysis
- Coil analytics drive further into system performance to develop targets
- M&V and continuous commissioning built-in with instrumentation, analytics and fault detection

RFI/RFP: NYC DCAS

- NYC Department of Citywide Administrative Services (DCAS)
 - Energy Management for 4,000+ buildings
 - Facilities management for 55 public buildings
 - Aggressive goals for energy efficiency and greenhouse gas reduction

Cast the Net

Innovative Demonstrations for Energy Adaptability (IDEA)

- Seeks technology that is commercially viable and available, but relatively new to the NYC market or HVAC industry
- Turnkey installations & one-year performance assessment
- Phase I complete, Phase II & III underway

IDEA Program Anticipated Phases		
Phase I	Building Controls	Completed
Phase II	Energy Storage & Grid Solutions	Underway
Phase III	HVAC Optimization	Underway
Phase IV	Innovations in Renewable Energy	Underway

Assessment & Selection

- Multiple site visits and coordination to select the final location:
 - Manhattan Civil Courthouse
- Limited data, old building automation system, IT security concern
- 4x dual duct AHUs, 58,000 CFM, 550 GPM each

Project Status

- Installation finishing mid-June, 2018
- Assessment will run from 2018-2019

Project Goals:

- CHW optimization
- Improve space comfort
- 15% reduction in electrical energy consumption
- Provide enhanced monitoring, control and fault detection

Lessons Learned

- Where to start?
 - Use resources utilities, peers, conferences
 - Find the right location
- Starting small is okay
 - Understand the impact of scale is there a tipping point?
 - Set targets you can measure
- Action is better than inaction
 - Strive for improvement
 - Technology is always advancing!

Q&A // THANK YOU

www.flowenergy.com jeff.creighton@flowenergy.com

