LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

Caterpillar: Confidential Green

Carbon Reduction Through Efficient Use of Resources for a Gas Turbine Driven Generator Set

Jean-Luc Di Liberti, Solar Turbines Inc.

Problem Statement

- UCI operates a 19 MW CHP based on a 13MW Solar Turbines T130 Generator Set
- Carbon neutrality is a future goal of the UC system that CHP supports

Problem Statement

- Goal is to develop a 25MWh (returned energy) H2-based energy storage system to be integrated with the existing fossil fueled gas turbine.
- Recently added 4MW of PV Panels
- Turbine has completed testing at 4% H2
- How to approach the development of the H2 infrastructure, cost and optimize the system?

Goals

- Establishing and Operating the GT with a blend of H2/NG greater than 30%
- Integration of H2 generation technology with compression, storage and dispensing to the GT
- Evaluate the physical interconnection of the gas and electric subsystem with possible extension to the campus H2 refueling station
- Develop an integrated control systems to allow dynamic dispatching of ecosystem components

Overview

UCI Hydrogen Storage Ecosystem

ADVANCED POWER & ENERGY PROGRAM

UNIVERSITY of CALIFORNIA · IRVINE

Solar Turbines

Hydrogen Generation

- Reversible SOEC (Solid Oxyde Electrolyzer Cell)
- Alkaline
- PEM

Hydrogen Storage/Recompression consideration

- Gaseous
- Liquid

- Considerations:
 - Space
 - Cost/Size of storage
 - Pressure requirements/ Recompression cost

Optimization - Input

- Initial cost estimate for the system under consideration
- Initial performance estimate:
 - Carbon and pollutant emission
 - Cost of operation targets
 - Payback analysis
- Tools to be used:
 - DEROpt
 - NETL Tools /Models
 - Scenarios from DEROpt

DEROpt (UC Irvine)

- Mixed Integer Linear Program
- Techno-Economic Optimization and Analysis

ADVANCED POWER & ENERGY PROGRAM

UNIVERSITY of CALIFORNIA · IRVINE

- Inputs:
 - Site energy demand
 - Technology Capital/O&M costs an operational characteristics
 - Utility energy costs
 - Local Infrastructure limits
- Outputs:
 - Optimal Technology Mix
 - Optimal Operation Strategies
 - Plant performance

Results

- Use of H2 is beneficial for micro grid energy storage and load shifting
- Can be economically viable
- Multi input optimization for integration and operation of GT in UCI Micro grid will need to be developed to further optimize operation

Solar OIGITAL

Solar H2 Experience

- More than 55 packages operating in H2, 35+ years experience and +2M hours of operation
- 100% capability in Conventional combustion

Solar Turbines

Hydrogen Properties

- Lowest specific gravity
- Odorless, Colorless flame
- Not toxic
- Higher diffusivity
- High energy density by mass
- Low energy density by volume
- Higher flame temperature
- High speed of sound

Hydrogen Properties

LEADING THE WAY

Caterpillar: Con Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

CampusEnergy2022

	H2% with Balance Pipeline NG					
H2 Blend	0%	5%	10%	20%	30%	100%
Combustion Parameters						
Laminar Flame Speed (cm/s)	124	127	130	139	150	749
Autoignition Delay Time (msec)	124	112	107	104	103	76
Wobbe Index (btu/scf)	1215	1199	1183	1150	1116	1039
Flame Temperature (°F) ¹	4206	4210	4215	4225	4238	4510
Package & Fuel System						
Flammability (% vol LEL)		4.83	4.79	4.71	4.63	4
Maximum Experimental Spark Gap (MESG)	1.10	1.06	1.02	.94	.86	.28
NEC/CSA & IEC Gas Groups	D & IIA	D & IIA	D & IIA	D & IIA	D & IIB	B & IIC

¹ Adiabatic Stoichiometric Flame Temperature Calculated for a 23000hp class Gas Turbine at Full Load Conditions

Higher Flame Speed

- No Impact on Conventional Combustor
- DLE Combustor Impacts:
 - Flame Position in Combustor "Flashback" Risk
 - Slight Change at 20% H2 and Below
 - Combustion Stability

A Caterpillar Company

Direction of Flow

Combustor

Flashback in DLE Injector

Higher Flame Temperature

- Higher NOx Emissions
- Low impact depending on H2 content

Solar Turbines

Hydrogen Flames - Nearly invisible in daylight irradiating mostly in the infrared and ultraviolet region

May require duplicate detection if CH₄ and H₂ present

LEADING THE WAY

CampusEnerov2

Caterpillar: Cont Feb 15-18 Westin Boston Seaport District Hotel Boston, N

Leakage of hydrogen from flanges and fittings is expected to be 2 times as large as gaseous methane leakage – but diffusivity is much greater

Electrical Devices – Hydrogen Content Decreases MESG

MESG

- Classify flammable gases for the design and/or selection of electrical equipment in hazardous areas.
- "Maximum clearance between two parallel metal surfaces that has been found, under specified test conditions, to prevent an explosion in a test chamber from being propagated to a secondary chamber containing the same gas or vapor at the same concentration."

Solar Turbines

Caterpillar: Cont Fel: 15-18 Westin Zooton Seaport District Hotel Boston, MA

GT Package Evaluations

Caterpillar: Con Feb 15-18 Westin Beaton Seaport District Hotel Boston, MA

GT Package Evaluations

LEADING THE WAY CampusEnergy2022 Caterpillar: Cont Fel: 15-18: Westin Zeoton Seaport District Hotel: Boston, MA

Carbon Intensity Reduction

- Additional 10% reduction in Carbon intensity
- More than 35% reduction in CI!
- Annual CO2 savings depends on turbines load and annual hours of operation

Conclusions

- Use of Gas Turbines and Hydrogen supports the Carbon-neutral goal of UC
- A technico-commercial modeling coupled with an optimizer will minimize emission, reduced CAPEX and OPEX by defining:
 - The hydrogen production chain on campus
 - The required energy mix to be used based on the available grid dispatch of renewables
 - The GT mode of operation

Michael Ramotowski

Vince McDonell Jeffrey Reed

A Caterpillar Company

UNIVERSITY of CALIFORNIA · IRVINE

Caterpillar: Confidential Greer