Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Geothermal Deep Direct-Use for Decarbonizing Heating and Cooling:

Techno-Economic Analysis of Six Feasibility Studies Using Scenarios

Beckers, K., Kolker, A., and Pauling, H.

National Renewable Energy Laboratory

Q&A Will Not Be Answered Live

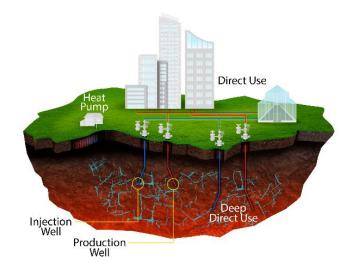
Please submit questions in the Q&A box. The presenters will respond to questions off-line.

Heating and Cooling Significantly Contributes to U.S. Greenhouse Gas Inventory

- 25% of U.S. primary energy is used for heating (<120°C) and cooling
- 28% of total U.S. greenhouse gas emissions are from direct fuel combustion in residential, commercial, and industrial sectors
- Can geothermal energy help with decarbonizing heating and cooling?

agriculture industrial processes 6% 26% 26% 26% 26% 28% transportation

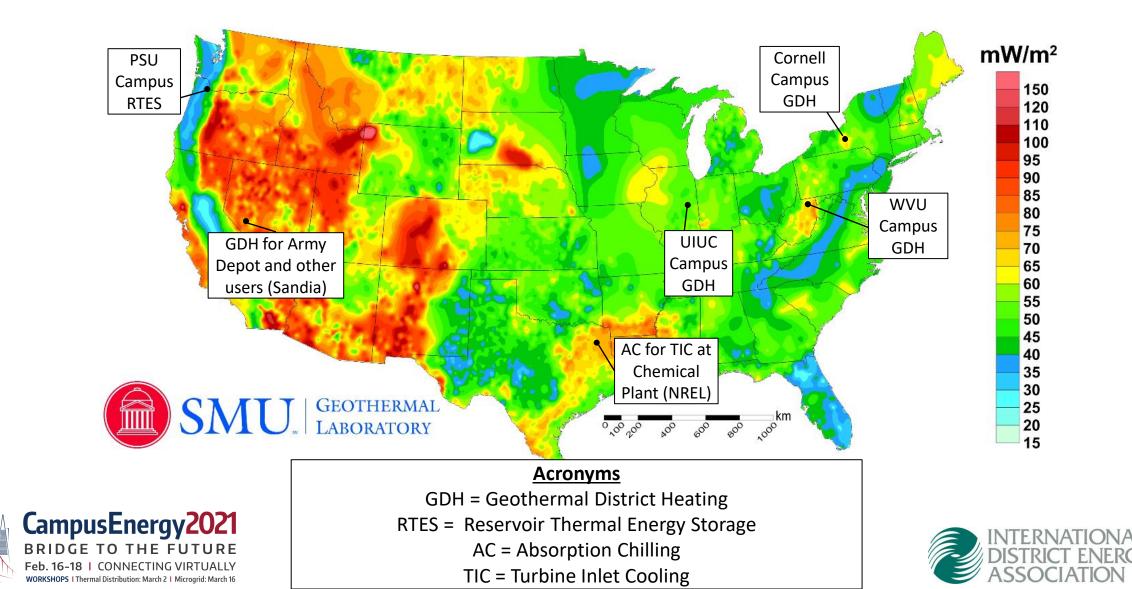
Source: EPA (2020), Inventory of U.S. Greenhouse gas Emission and Sinks: 1990-2018, 430-R-20-002.EPA


U.S. Greenhouse Gas Emissions Inventory

Decarbonizing District Energy with Geothermal Deep Direct-Use (DDU)

What is geothermal DDU?

- DDU draws on lower-temperature (<150°C) geothermal resources for multiple uses:
 - o District heating and cooling
 - Commercial and residential applications
 - Industrial processes and agricultural uses
- Includes subsurface thermal energy storage (TES).


6 DDU Case Studies

- DOE-funded feasibility studies for district-scale DDU projects (mostly for campuses) 2017–2019
- Awardees:
 - Team 1. Cornell University
 - $\circ\,$ Team 2. National Renewable Energy Lab (NREL) & partners
 - $\,\circ\,$ Team 3. Portland State University (PSU) & partners
 - $\,\circ\,$ Team 4. Sandia National Labs (Sandia) & partners
 - Team 5. University of Illinois Urbana-Champaign (UIUC) & partners
 - $\,\circ\,$ Team 6. West Virginia University (WVU) & partners.

DDU Case Study Locations

For DDU-related publications, go to <u>https://gdr.openei.org</u> and search "DDU"

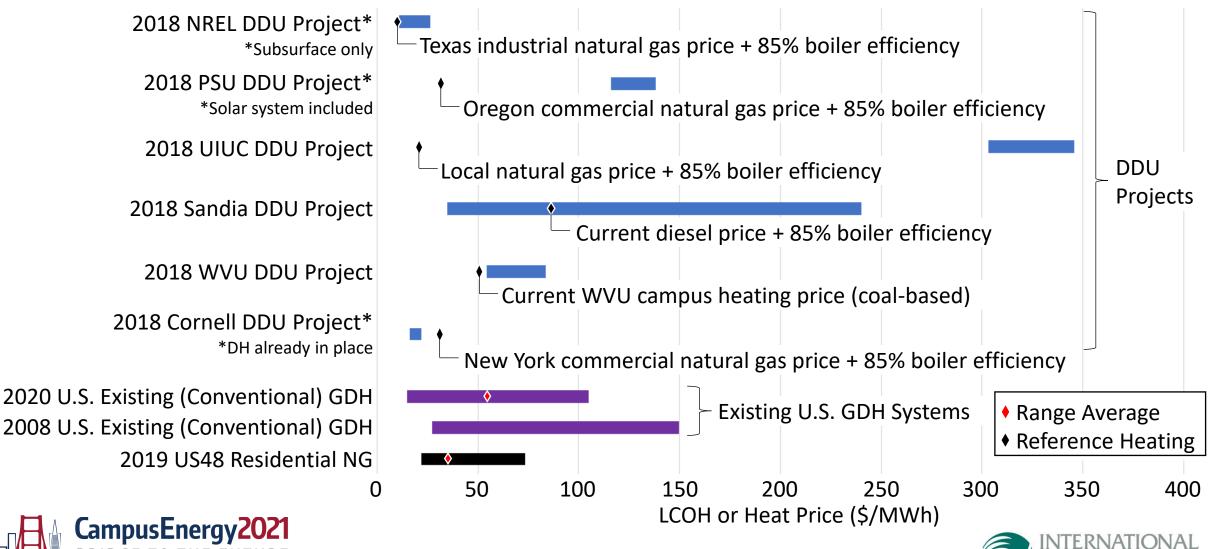
Range of Input Parameters Used in DDU Feasibility Studies

Model Input Parameter	Min	Max		
Drilling depth	0.3 km	2.9 km		
Reservoir temperature	45°C	~120°C		
System size	0.6 MW	32 MW		
Geothermal gradient	16.5°C/km	272°C/km	GEOPHIRES Techno-Economi	
Number of wells	1 inj + 1 prod	5 inj + 10 prod	Analysis	
Well flow rate	11 kg/s	125 kg/s	Simulator:	
Utilization factor	~45%	98%	https://github.com	
Tax rate	0%	30%	NREL/ GEOPHIRES-v2	
Discount rate	0.8% (real)	7.5% (nominal)		
Exploration costs	\$0	\$4.2M		
Surface application	DH only	DH \pm HP \pm AC \pm Solar TES		
Surface capital costs	\$381/kW	\$6500/kW		

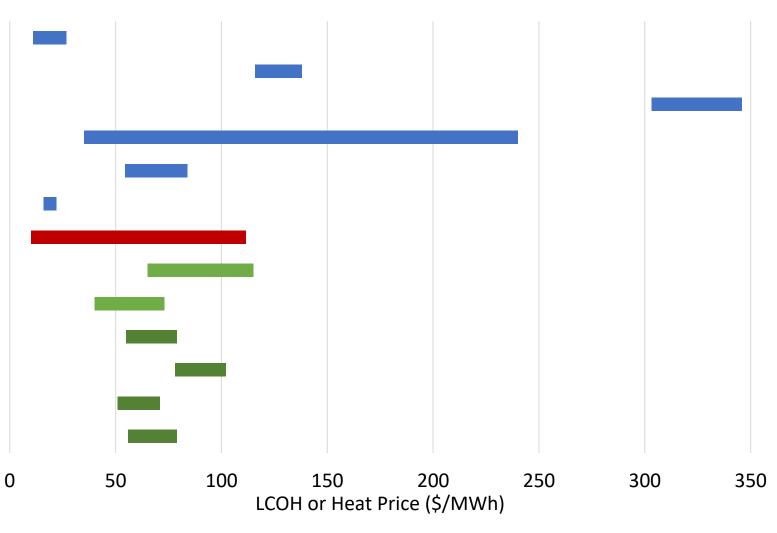
Capital Costs for Base-Case DDU Projects: Subsurface

Project parameter	University of Illinois at Urbana- Champaign	Sandia National Laboratories	Cornell West Virginia University University		National Renewable Energy Laboratory	Portland State University				
HEAT										
Source	Earth	Earth	Earth	Earth	Earth	Solar array				
Cost	N/A	N/A	N/A	N/A	N/A	\$6,100/kW				
GEOTHERMAL SYSTEM										
Exploration costs	\$0	\$1.02 million	\$0	\$4.2 million	\$3.4 million	\$0				
Drilling depth	1.9 km	0.3 km	2.5 km	2.9 km	2.7 km	0.3 km				
Reservoir temperature	45 C	~100 C	~72 C	~88 C	~120 C	~12.5 C (stored heat: up to 80 C)				
Geothermal gradient	16.5 C/km	272 C/km	27.5 C/km	25.8 C/km	37.5 C/km	N/A				
Number of wells	1 injection + 1 production	1 injection + 1 production	1 injection + 1 production	5 injection + 10 production	1 injection + 1 production	1 injection + 1 production				
Well flow rate	11 kg/s	36 kg/s	50 kg/s	40 kg/s per well	125 kg/s	50 kg/s				
Utilization factor	~45%	48%	98%	95%	90%	N/A				
Stimulation costs	\$0	\$0	\$1.25 million	\$0	\$0	\$0				
Subsurface capital cost (\$/MMBtu)	\$91.8	\$3.7	\$4.1	\$5.8	\$2.4	\$1.3				

Levelized Costs (LCOH) for Base-Case DDU Projects


	· · · · ·	, <u>,</u>					
er Project parameter	University of Illinois at Urbana- Champaign	Sandia National Laboratories	Cornell University	West Virginia University	National Renewable Energy Laboratory	Portland State University	
SURFACE APPLICATION							
System size	0.6 MW	6.2 MW	13 MW (including heat pumps)	32 MW (including heat pumps)	15 MW	0.5 MW	
Surface equipment	District heat + electric heat	District heat	District heat (+ heat pumps)	District heat + absorption cooling	Absorption cooling	District heat (using solar thermal energy reservoir storage)	
Surface capital cost	\$5,000/kW	\$785/kW	\$560/kW	\$1,300/kW	\$381/kW	\$400/kW	
Surface capital cost inclusions	Piping + district heat system	Piping + district heat system	Heat pumps + district heat connection	Piping + district heat retrofit	Piping + absorption cooling system	Piping + building heat system	
GEOTHERMAL SYSTEM							
Subsurface capital cost (\$/MMBtu)	\$91.8	\$3.7	\$4.1	\$5.8	\$2.4	\$1.3	
TOTAL PROJECT	-	-				-	
Tax rate	0%	0%	0%	30% 0%		0%	
Discount rate	5%	7%	2.5%	7.5%	5%	0.8%	
Project lifetime	50 years	30 years	30 years	30 years	30 years	30 years	
Base case LCOH (\$/MMBtu)	\$101	\$12	\$5	\$18	\$3.7	\$34	
ampusEnergy2021							

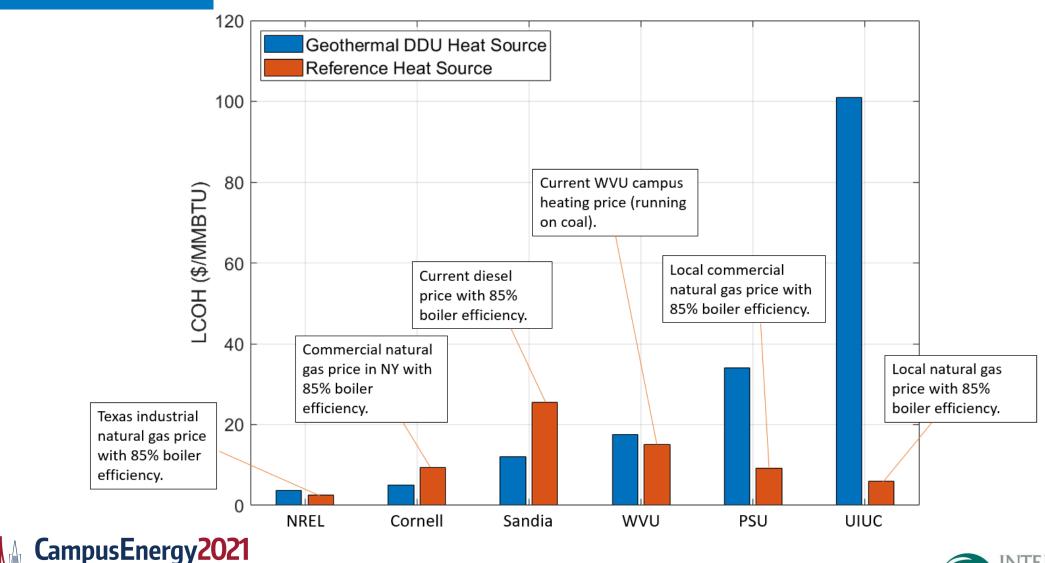
Feasibility of DDU: LCOH Ranges



Feb. 16-18 I CONNECTING VIRTUAL WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March

Transforming ENERGY

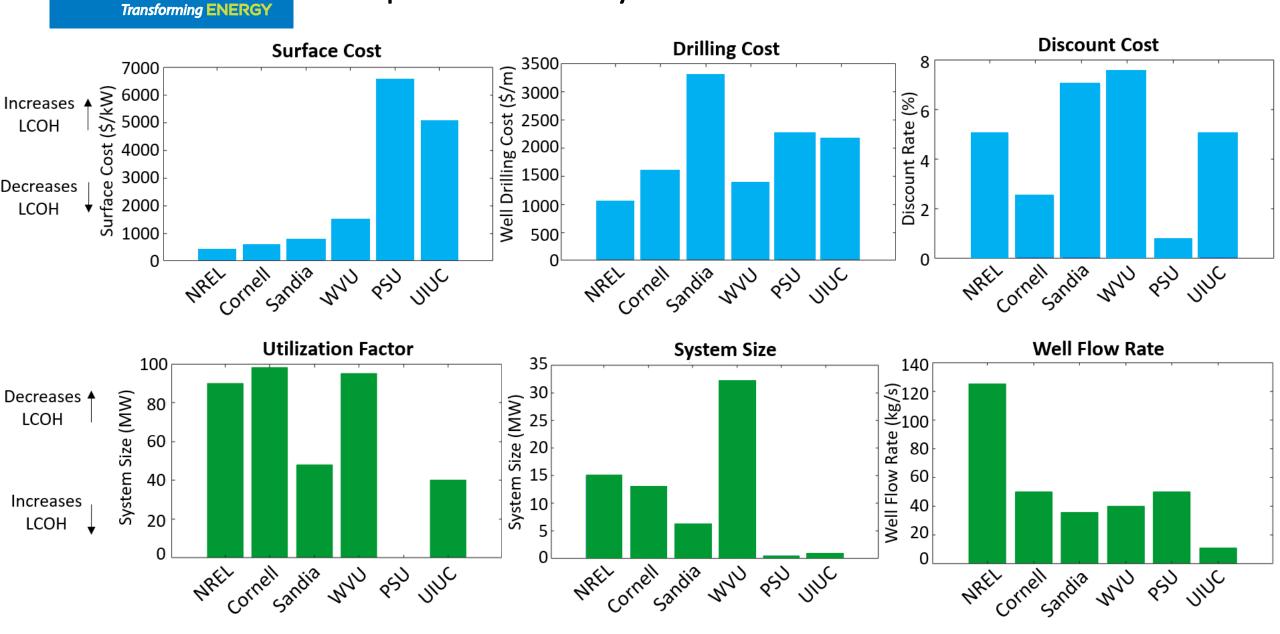
DDU vs. European and GeoVision LCOH



INTERNATIONAL DISTRICT ENERGY ASSOCIATION

2018 NREL DDU Project (Subsurface only) 2018 PSU DDU Project (Solar system included) 2018 UIUC DDU Project 2018 Sandia DDU Project 2018 WVU DDU Project 2018 Cornell DDU Project (DH already in place) 2014 Existing European GDH Systems 2013 Reber NY and PA EGS "Initial Learning" 2013 Reber NY and PA EGS "Commercially Mature" 2030 GeoVision EGS "TI" 2030 GeoVision EGS "BAU" 2016 GeoVision Hydrothermal "TI" 2016 GeoVision Hydrothermal "BAU"

CINREL DDU LCOH vs. Reference Fuel Cost



Feb. 16-18 I CONNECTING VIRTUALLY WORKSHOPS I Thermal Distribution: March 2 I Microgrid: March 16

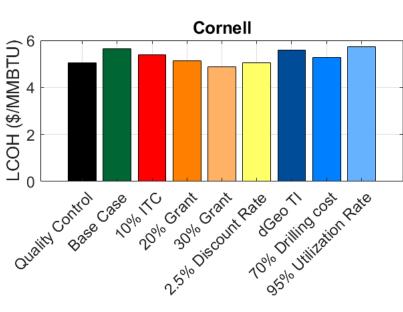
BRIDGE TO THE FUTURE

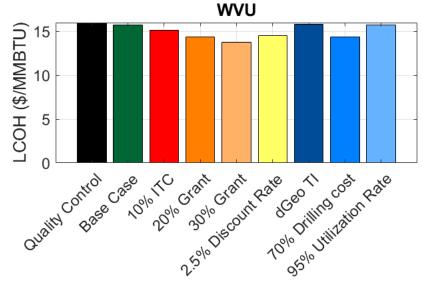
Transforming ENERGY

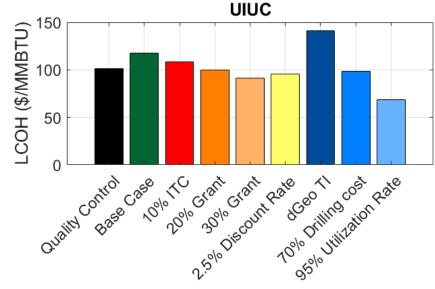
Impact of Key Parameters on DDU LCOH

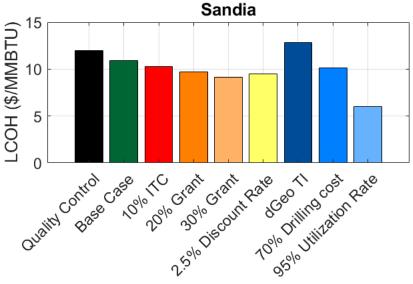
Scenario Analysis of DDU LCOH

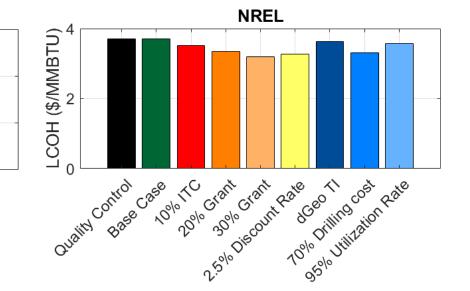
Transforming ENERGY

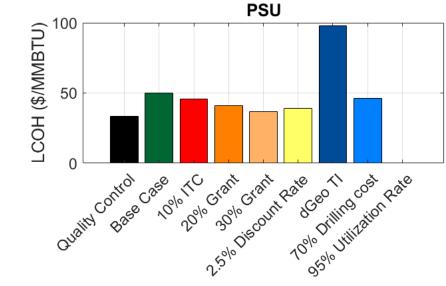

GEOPHIRES Scenario	Discount Rate	Project Lifetime	Tax Rate	Exploration Cost	Drilling Cost	Surface CAPEX and OPEX	Surface Equipment	Utilization Factor	
Scenario 1 (QC)	As is	As is	As is	As is	As is	As is	As is	As is	
Scenario 2 (Default Financing)	5%	30 years	0%	As is	As is	As is	As is	As is	Objective: Streamline inputs to better compare projects
Scenario 3 (Default Cost + Financing)	5%	30 years	0%	\$ 0	Corrected	As is	As is	As is	
Scenario 4 (Subsurface LCOH)	5%	30 years	0%	\$0	As is	\$0	No HPs, heaters, etc.	As is	
Scenario 5 (Low Drilling Cost)	5%	30 years	0%	As is	70%	As is	As is	As is	
Scenario 6–8 (Grants & Tax Credits 10, 20, 30%)	5%	30 years	0%	As is	As is	As is	As is	As is	Objective: Evaluate
Scenario 9 (High Utilization Factor)	5%	30 years	0%	As is	As is	As is	As is	95%	key factors impacting DDU
Scenario 10 (dGeo TI)	5%	30 years	0%	\$3.5M	50%	As is	80% end-use efficiency	As is	deployment
Scenario 11 (Low Discount Rate)	2.5%	30 years	0%	As is	As is	As is	As is	As is	


Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 I CONNECTING VIRTUALLY WORKSHOPS I Thermal Distribution: March 2 I Microgrid: March 16




Scenario Analysis of DDU LCOH (cont.)




Transforming ENERGY

Takeaways from Scenario Analysis

Key project parameters drive overall LCOH, including:

- ✓ Resource depth and temperature
- ✓ Surface application
- ✓ Well flow rate
- ✓ Drilling cost
- ✓ Utilization factor
- ✓ Discount rate

Other factors can lower LCOH:

- ✓ Larger vs. smaller systems
- ✓ Retrofit of existing surface equipment vs. new installations
- Limit surface piping lengths:
 locate thermal demand close to geothermal resource
- ✓ Grants and incentives

Beyond LCOH: DDU Feasibility by Other Metrics

	Cornell	UIUC	NREL	WVU	Sandia	PSU
Environmental Impacts	70% drop in LCOH when including avoided emissions	CO_2 offsets from DDU v. BAU = 5.4 x10 ⁵ kg CO_2 /yr	N/A	Emissions analysis	CO ₂ offsets from DDU vs. BAU = 2,248 MT/yr	Statement on emissions from NG life cycle vs. DDU
Societal Impacts	50% drop in LCOH when including regional economic impact	N/A	N/A	N/A	N/A	N/A
Other Calculated Benefits (e.g., storage, cooling)	N/A	Combined heating and cooling scenario	NPV for DDU cooling. LCOC = \$21/MWh (competitive with alternatives)	Integrated heating and cooling system	N/A	Storage cost (LCOS) = \$34/MMBTU (competitive with alternatives)
Resilience and Sustainability	DDU key component in Climate Action Plan	Energy security, weather resilience	N/A	Resilient energy source for sustainability plan	N/A	Reliability and resilience assessment: geothermal = high
Market Potential	Studied as part of ongoing ESH project	Regulatory assessment	Regulatory assessment	Regulatory assessment	Regulatory assessment	Regulatory assessment

CampusEnergy2021

Feb. 16–18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

THE FUTURE

BRIDGE TO

 Wide variety in DDU projects' technical, economic, and financing conditions results in wide range of projects' cost competitiveness

 ✓ Geothermal DDU can be used for heating, cooling, and thermal storage

✓ Large **decarbonization** potential of geothermal DDU.

For DDU-related publications, go to <u>https://gdr.openei.org</u> and search "DDU"

https://github.com/NREL/GEOPHIRES-v2

Amanda Kolker amanda.kolker@nrel.gov

Koenraad Beckers koenraad.beckers@heateon.com

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Geothermal Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

