Cooling Tower Basins

Design Considerations and Applications

February 20, 2014
Agenda

• Basins? Really?
• Industry Standards
• Design Considerations
 – Geometry
 – Materials
 – Hydraulics & Flow
 – Pump Intakes
 – Maintenance
 – Basin Coatings
 – Acoustics
• Design Examples
Why Should I Care?

• Typical Basin...

• Provide for:
 – Water retention
 – Tower support
 – Solids collection
 – Maintenance

• Vendor guidance:
 – Basin design by others...
 – Hydraulic design of basin by others...
Industry Standards

- CTI Standards: 47; address basin design
- CTI Technical Papers: >1000; address basin design
 - TP10-26: Cooling Tower Basin Leakage Assessment & Mitigation
 - TP02-05: Concrete Basics, Materials, Selection in Design and Repair
 - TP71-07: Design of Concrete Basins for Cooling Towers
- ANSI/HI 9.8: Pump Intake Design - Geometry
- The rest is up to you...
Design Considerations

• Geometry
 – Cooling tower size/layout
 – Site & available space
 – Water patterns with fan operation
 – Pump types & location
 – Storage volume
Design Considerations

• **Materials - Concrete**
 – Durability
 – Integrity

• **3 Most Important Concrete Factors**
 – Quality Materials
 – Quality Design/Detailing
 – Quality Installation

• **How does concrete fail?**
 – Corrosion of Embedded Materials
 – Freeze-Thaw
 – Aggressive Chemical Exposure
 – Chemical Reactions of Aggregates
Design Considerations

- Concrete Design
 - Mixtures
 - Control joints
 - Waterstops
 - Pour temperatures
 - Embedded reinforcement

- Subsurface quality
- Structural loading
- Leakage
Design Considerations

• Concrete Specifications
 – Air entraining admixture for freeze thaw resistance
 – To reduce permeability, Fly Ash or Silica Fume

• Reinforcing Steel
 – Epoxy Coated A615 reinforcement - $2,200/ton
 – Hot Dip Galvanized A615 reinforcement - $2,540/ton
 – MMFX reinforcement - $2,500/ton (fewer tons req’d)
 – Stainless Steel - $4,800/ton

• Concrete Cover
 – Concrete cast against earth – 3”
 – Water Retaining Structures – 2”
Design Considerations

• Specific phenomena that can adversely affect pump performance:
 – Submerged vortices
 – Free-surface vortices
 – Excessive pre-swirl entering the pump
 – Entrained air or gas bubbles
Design Considerations

- Basin Hydraulics & Flow: CTI TP71-07
 - Limit water velocity at basin outlet (to pumps) to 1 to 2 FPS maximum
 - Use 6-inch tall mud sill to trap sludge that drops out of suspension
 - Maintain separation distances
Design Considerations

• Guidance from HI-9.8:
 – Channel approach velocity – 1.25 FPS max
 – Wing walls to allow parallel uniform inlet flow
 – Pump suction intake velocity 1 FPS max
 – Vented separation walls to prevent eddys and vortexing
 – Submergence exceed NPSHR
 – Usable sump volume exceeds 3X max of all running pumps
Design Considerations

• Coatings
 – Chemical Resistance
 – “Bridgability”
 – Maintenance

• Acoustics

• Maintenance
 – Basins = Dirt
 – Partitioned basins
 – Basin flow velocity
 – Debris screens
 – Filters or separators
Design Considerations

- Maintenance
 - Basins = Dirt
 - Partitioned basins
 - Basin flow velocity
 - Debris screens
 - Filters or separators
Design Example – UNC Chapel Hill

- UNC Chapel Hill – Cogen Plant Replacement
- 13,250 GPM, 3-cell tower
- Future expansion
- Continuous operation
- Constrained site
- Acoustic design
Design Example – UNC Chapel Hill

- HVE Overhead
- Noise @ Property Line
- 6’ Grade Change
- Continuous Operation
Design Example – UNC Chapel Hill
Design Example – UNC Chapel Hill

No Water Storage

Basin Channel

Pump Bay
Design Example – UNC Chapel Hill

- Cell Basin Discharge – 1.75 FPS
- Sump Channel Velocity – 0.8 FPX
- Pump Bay Velocity – 0.3 FPS
Design Example – UNC Chapel Hill
Design Example – UNC Chapel Hill
Design Example – U of Missouri

- University of Missouri – Cooling Tower Replacement
- 50,000 GPM, 5-cell tower
- 4 steam turbine generators
- Selective shutdowns
- Constrained site
Design Example – U of Missouri

Gas Turbine Plant

Retaining Wall

Fire Lane
Design Example – U of Missouri
Design Example – U of Missouri
Design Example – U of Missouri
Design Example – U of Missouri