





# PROFITABILITY THRESHOLDS OF RESILIENT MICROGRIDS (and how to exceed them)





# Agenda

- About HARC
- Resilience and microgrids
- Microgrid Design Considerations with Uncertainty
- HARC Energy Planning for Microgrids
- HARC's Microgrid Scenarios
- Conclusions & Next steps

# **About HARC**

### **About HARC**

- The Houston Advanced Research Center (HARC) is an independent research hub helping people thrive and nature flourish
- Founded by George P. Mitchell in 1982
- A 501(c)(3) organization located in The Woodlands
- We provide objective, unbiased, non-advocacy approach to finding scientific answers to complex questions
- A sustainability-focused company



### **HARC Mission & Programs**



Mission: To provide independent analysis on energy, air, and water issues to people seeking scientific answers and to operate as a research hub finding solutions for a sustainable future.







# **HARC's Headquarters**

### Certified LEED Platinum & Energy Star (92/100)

- 18,500 SF office building
- 11.52 kW DC rooftop PV solar plant
- Geothermal field, high-efficiency heating and cooling
- LED lighting
- Uses 73% less energy than the average office building in the US.
- First monitored Net-Zero event Feb. 19, 2018: 4,41 kWh/2h20m







### Road to Certified Zero Energy



- Transition from intermittent net-zero events during the weekends to being one of the first certified commercial net-zero energy (NZE) buildings in Texas
- Financial support of the Green Mountain Energy Sun Club
  - 208 additional solar panels (about 75 kW DC) with the requisite inverters
  - Expected completion date: November 2018



# **Road to Certified Zero Energy**



# HARC Building Upgrade – Beyond Platinum



# Resilience and Microgrids

# Planning for Resilience

# RESILIENCE is a key principle of disaster preparedness and planning

- Resilience (engineering) is the ability to absorb or avoid damage without suffering complete failure.
- Human resilience (psychology) is the capacity to make realistic plans and take steps to carry them out.
- Ability to maintain operation despite a devastating event –
   business continuity



### What kind of microgrid HARC wants?



**figure 3.** This hierarchical microgrid is an example of the grid architectures being explored to enable the highly distributed grid concept and maximize reliability and resiliency under a wide variety of contingency conditions and locations as well as DER and load-balance scenarios. (Source: Sandia National Laboratory.)

- Regarding the grid, power generators in a microgrid can :
  - Coexist: as individual power systems, using resources on both sides of the meter at a time.
  - Compete: as individual power systems using one or another.
  - Cooperate: provide services to other microgrids or to the distribution grid.
- Is there a microgrid for every company?
  YES
- Is it worth exploring your possibilities to have a MG?

NO

Make sense for every company to have their own microgrid?

# **Designing MGs for Resilience**

#### How do we plan for uncertainties in a 20-year energy project?



- One estimate states that over \$150 billion per year is lost by U.S. industries due to electric network reliability problems\*
- Distributed generation systems designed for resilience will incur additional costs (\$45 -\$170/kW for CHP systems depending on complexity of system)\*
- These additional costs however provide important reliability benefits to the site, and to the community at large

<sup>\*</sup> Source: https://www1.eere.energy.gov/manufacturing/distributedenergy/pdfs/chp\_critical\_facilities.pdf

### **Designing MGs for Resilience**

#### **Distributed Energy Resources Disaster Matrix**

|                                     | Flooding | High Winds | Earthquakes | Wildfires | Snow/Ice              | Extreme<br>Temperature |
|-------------------------------------|----------|------------|-------------|-----------|-----------------------|------------------------|
| Natural Disaster<br>or Storm Events | ****     | 3          | (3)         | \$        | **                    |                        |
| Battery Storage                     | $\Theta$ | 0          | $\Theta$    |           | 0                     | $\overline{\Theta}$    |
| Biomass/Biogas<br>CHP               | $\Theta$ | $\Theta$   | $\Theta$    |           | 0                     | 0                      |
| Distributed Solar                   | 0        | $\Theta$   | $\Theta$    |           | $\Theta$              | $\Theta$               |
| Distributed Wind                    | 0        | $\Theta$   | $\Theta$    | $\Theta$  | $\Theta$              | $\Theta$               |
| Natural Gas CHP                     | 0        | 0          | $\Theta$    | $\Theta$  | 0                     | 0                      |
| Standby Generators                  | $\Theta$ | 0          | $\Theta$    |           | $\overline{\bigcirc}$ | 0                      |

#### Ranking Criteria

Four basic criteria were used to estimate the vulnerability of a resource during each type of disaster event. They include the likelihood of experiencing:

- a fuel supply interruption,
- damage to equipment,
- 3. performance limitations, or
- a planned or forced shutdown

| 0 | indicates the resource is unlikely to experience any impacts |
|---|--------------------------------------------------------------|
|   | any impacts                                                  |





### **Designing MGs for Resilience**

- 1. Identify potential events that can harm the performance of your facilities
- 2. Analyze historic values and duration of different events: power blackouts, hurricanes, floods, droughts, equipment breakdown, etc..
- 3. Define strategies to follow for each of those events
- 4. Define a frequency/probability for this events to occur
- 5. Estimate potential economic losses under different situations
- 6. Define how much money does your company want to spend on avoiding the potential consequences of these events (resilience)
- 7. Include the costs of the lack resilience in your microgrid's economic balance
- 8. Define the right microgrid for your facilities
- 9. Find a business model that fit your financial goals

# Microgrid Design Considerations with Uncertainty

### **Uncertainty Sources: Energy Price**



### **Uncertainty Sources: Energy Demand**

### Weekly Power Demand Curve (July 19<sup>th</sup>-July 24<sup>th</sup>)

Power demand was between -1 and 17 kW during the weekend.



### Uncertainty Sources: Temperatures





SOURCE: NOAA National Centers for Environmental Information (NCEI)

### Certainties in the planning process: PV Production

Generation capacity drops around 14% in summer due to high temperatures



### Certainties in the planning process: PV Production

#### Generation capacity decrease during hurricane Harvey: 92.3% (average)





### Certainties in the planning process: PV Production

• The new 85 kW solar plant with similar performance as during Harvey (very limited sunlight) will produced +/- 78 kWh per day.



### **Uncertainty Sources: Rain**





SOURCE: NOAA National Centers for Environmental Information (NCEI)

### Certainties in the Planning Process: Floods



# **HARC Energy Planning for Microgrids**

# **Energy Supply Analysis**

### Entergy (Local utility) + PV Solar

- Low voltage power supply (120/208V)
- Net metering. No capacity charges.
- Peak power demand 42 kW.
- Average power demand 12.93 kW.
- 113,297 kWh in the last 12 months





# **Energy Efficiency**

### **Building's Energy Consumption**

- 113,297 kWh in the last 12 months
- 6.1 kWh (20.8 KBtu) per sq. ft. annually
- 310.4 kWh per day

Savings goal is 5% of annual energy consumption per year for the next 2 years under building's usage conditions.

#### Average Energy Consumption per Energy Use



### **HARC Emergency Operating Mode**

- Power blackout or severe weather event: staff required to stay at home and work remotely.
  - Mode 1, Server backup: Emergency lighting, server and server AC, 108 kWh per day (4.5 kW average, 6 kW peak).
  - Mode 2, Building stand-by: Energy demand 181 kWh per day (7.54 kW average, 11 kW peak).
  - Mode 3, Full building operations: Energy demand 312 kWh per day (13 kW average, 35 kW peak).

- HARC buys power at \$0.103 and sells excess power back to the grid at \$0.02 per kWh  $\rightarrow$  additional savings of \$0.0753 per kWh from solar stored and provided by battery.
  - Opportunity in PV solar + battery microgrid for energy savings during regular operations while increasing resilience.

# **HARC's Microgrid Scenarios**

# HARC microgrid design

- Power supply as of November 2019: Existing 85 kW Solar + Power grid
- Energy and design goals in order of importance:
  - ✓ Resilience
  - ✓ Costs savings
  - ✓ Minimum environmental impact
- Main candidate technologies:
  - SOLUTION 1: Minimum investment: 50 kW propane gas generator
  - SOLUTION 2: Maximum efficiency: Battery storage+ PV island



# HARC microgrid design

- Power supply as of November 2019: Existing 85 kW Solar + Power grid
- To increase HARC building's resilience HARC requires
  - 1. Energy efficiency improvements
  - 2. Changes in the interconnection scheme with the utility.
  - 3. Define the right microgrid and strategy to operate it







# **Existing Interconnection Scheme**

Existing Layout



Case B: Generator is off when Entergy Grid is down No standby electrical power



# **Solution 1: Propane Generator**

#### **SOLUTION 1: Minimum investment**

- Standby propane genset 50 kW, 120/208, 3-Phase
- 500 gallons propane tank and automatic transfer switch.
- Only for emergency uses when the grid is down
- PV solar down when grid is down in emergency mode
- Estimated budget \$24,000
- Around 4 days autonomy for full building operations.
- Up to 10 days autonomy for building in emergency mode.



### Solution 2: PV + Batteries + Grid

#### **SOLUTION 2: PV + Batteries + Grid for full building operations**

- 85 kW DC PV plant
- 50 kW peak power supply in island mode
- Battery to be sized for different autonomy levels
- Basic energy management system required.
- Estimated budget \$2,000 per KW (peak) + battery cost



### Solution 2: PV + Batteries + Grid

- As stated before, the new 85 kW solar plant with similar performance as during Harvey (very limited sunlight) will produced +/- 78 kWh per day.
- In order to not discontinue operations during a Harvey-type day, the battery must provide the energy not generated by solar during the day.
- A 200 kWh battery could provide a six days autonomy for mode 1 and two days autonomy for mode 2.

|        |              |                | WORSE CASE (HARVEY) SCENARIO |                          |                          |                          |  |  |  |  |  |  |  |  |
|--------|--------------|----------------|------------------------------|--------------------------|--------------------------|--------------------------|--|--|--|--|--|--|--|--|
|        | Daily Energy | PV-generated   | From battery                 | From battery             | From battery             | From battery             |  |  |  |  |  |  |  |  |
|        | Demand (kWh) | day time (kWh) | Night hours 1 day (kWh)      | Night hours 5 days (kWh) | night hours 6 days (kWh) | night hours 7 days (kWh) |  |  |  |  |  |  |  |  |
| MODE 1 | 108          | 78             | 30                           | 150                      | 180                      | 210                      |  |  |  |  |  |  |  |  |
| MODE 2 | 181          | 78             | 103                          | 515                      | 618                      | 721                      |  |  |  |  |  |  |  |  |
| MODE 3 | 312          | 78             | 234                          | 1,170                    | 1,404                    | 1,638                    |  |  |  |  |  |  |  |  |

### Solution 2: PV + Batteries + Grid

#### SOLUTION 2: PV + Batteries + Grid for full building operations

- 85 kW DC PV plant
- 50 kW peak power supply in island mode
- Battery to be sized for different autonomy levels
- Energy management system required
- Estimated budget: \$180,000
  - ✓ 50 kW x \$2,000/kW= \$100,000
  - ✓ Battery cost 200 kWh x \$400/kWh= \$80,000



### Cost of the Lack of Resilience and Economic Constraints



- Potential blackout duration is increasing in the area.
- Average power outage 2013-2017: 8.20 hours per year
- \$11,278 in economic losses estimated per average power outage for HARC
- Propane genset: budget limitation \$10,000 if positive NPV after 12 years is possible.
- Profitability threshold PV + battery MG: 8 years

# **Economic Analysis of Microgrid Solutions-1**

#### **SCENARIO 1:**

- ✓ Zero power outages in next 12 years
- ✓ Electricity price escalation 3% per year
- ✓ Interest rate 5%

#### Incentives required for profitability limits:

• Genset + grid: \$14,000

• PV + battery + grid: \$145,500

|                                | SO       | LUTION1            |          | SOLUTION 2 |          |                     |          |                     |          |                      |          |                      |          |                      |
|--------------------------------|----------|--------------------|----------|------------|----------|---------------------|----------|---------------------|----------|----------------------|----------|----------------------|----------|----------------------|
|                                | 50 k     | W Genset           | 1        | 200 kWh    |          | 200 kWh             |          | 200 kWh             |          | 200 kWh              |          | 200 kWh              |          | 200 kWh              |
| TOTAL Investment<br>Incentives | \$<br>\$ | (24,000)<br>14,000 | \$<br>\$ | (180,000)  | \$<br>\$ | (180,000)<br>40,000 | \$<br>\$ | (180,000)<br>80,000 | \$<br>\$ | (180,000)<br>120,000 | \$<br>\$ | (180,000)<br>145,419 | \$<br>\$ | (180,000)<br>160,000 |
| Avoided costs                  | Ý        | -                  | Ţ        | -          | Ţ        | -                   | Ų        | -                   | Ţ        | -                    | Ţ        | -                    | Ļ        | -                    |
| Own capital                    | \$       | (10,000)           | \$       | (180,000)  | \$       | (140,000)           | \$       | (100,000)           | \$       | (60,000)             | \$       | (34,581)             | \$       | (20,000)             |
| Year 1                         |          | 0                  |          | 4,323      |          | 4,323               |          | 4,323               |          | 4,323                |          | 4,323                |          | 4,323                |
| Year 2                         |          | 0                  |          | 4,452      |          | 4,452               |          | 4,452               |          | 4,452                |          | 4,452                |          | 4,452                |
| Year 3                         |          | 0                  |          | 4,586      |          | 4,586               |          | 4,586               |          | 4,586                |          | 4,586                |          | 4,586                |
| Year 4                         |          | 0                  |          | 4,723      |          | 4,723               |          | 4,723               |          | 4,723                |          | 4,723                |          | 4,723                |
| Year 5                         |          | 0                  |          | 4,865      |          | 4,865               |          | 4,865               |          | 4,865                |          | 4,865                |          | 4,865                |
| Year 6                         |          | 0                  |          | 5,011      |          | 5,011               |          | 5,011               |          | 5,011                |          | 5,011                |          | 5,011                |
| Year 7                         |          | 0                  |          | 5,161      |          | 5,161               |          | 5,161               |          | 5,161                |          | 5,161                |          | 5,161                |
| Year 8                         |          | 0                  |          | 5,316      |          | 5,316               |          | 5,316               |          | 5,316                |          | 5,316                |          | 5,316                |
| Year 9                         |          | 0                  |          | 5,476      |          | 5,476               |          | 5,476               |          | 5,476                |          | 5,476                |          | 5,476                |
| Year 10                        |          | 0                  |          | 5,640      |          | 5,640               |          | 5,640               |          | 5,640                |          | 5,640                |          | 5,640                |
| Year 11                        |          | 0                  |          | 5,809      |          | 5,809               |          | 5,809               |          | 5,809                |          | 5,809                |          | 5,809                |
| Year 12                        |          |                    |          | 5,984      |          | 5,984               |          | 5,984               |          | 5,984                |          | 5,984                |          | 5,984                |
|                                |          |                    |          |            |          |                     |          |                     |          |                      |          |                      |          |                      |
| NPV (\$)                       |          | 0                  |          | (129,008)  |          | (90,913)            |          | (52,818)            |          | (14,722)             |          | 9,486                |          | 23,373               |
| Payback (Years)                |          | -                  |          | 41.64      |          | 32.39               |          | 23.13               |          | 13.88                |          | 8.00                 |          | 4.63                 |
| IRR (%)                        |          | -                  |          | -13.1%     |          | -10.4%              |          | -6.5%               |          | 0.3%                 |          | 9.5%                 |          | 21.7%                |

# **Economic Sizing of Microgrid - 2**

#### **SCENARIO 2:**

- ✓ 1 power outage (8 hours) in the next 12 years (year 2)
- ✓ Electricity price escalation 3% per year
- ✓ Interest rate 5%

#### Incentives required for profitability limits:

• Genset + grid: \$3,369

• PV + battery + grid: \$134,800

|                  | SO   | LUTION1  | SOLUTION 2      |    |           |    |           |    |           |    |           |    |           |
|------------------|------|----------|-----------------|----|-----------|----|-----------|----|-----------|----|-----------|----|-----------|
|                  | 50 k | W Genset | 200 kWh         |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |
| TOTAL Investment | \$   | (24,000) | \$<br>(180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) |
| Incentive        | \$   | 3,369    | \$<br>-         | \$ | 40,000    | \$ | 80,000    | \$ | 120,000   | \$ | 134,787   | \$ | 160,000   |
| Avoided costs    | \$   | 10,631   | \$<br>10,631    | \$ | 10,631    | \$ | 10,631    | \$ | 10,631    | \$ | 10,631    | \$ | 10,631    |
| Own capital      | \$   | (10,000) | \$<br>(169,369) | \$ | (129,369) | \$ | (89,369)  | \$ | (49,369)  | \$ | (34,581)  | \$ | (9,369)   |
| Year 1           |      |          | 4,323           |    | 4,323     |    | 4,323     |    | 4,323     |    | 4,323     |    | 4,323     |
| Year 2           |      | -        | 4,452           |    | 4,452     |    | 4,452     |    | 4,452     |    | 4,452     |    | 4,452     |
| Year 3           |      | -        | 4,586           |    | 4,586     |    | 4,586     |    | 4,586     |    | 4,586     |    | 4,586     |
| Year 4           |      | -        | 4,723           |    | 4,723     |    | 4,723     |    | 4,723     |    | 4,723     |    | 4,723     |
| Year 5           |      | -        | 4,865           |    | 4,865     |    | 4,865     |    | 4,865     |    | 4,865     |    | 4,865     |
| Year 6           |      | -        | 5,011           |    | 5,011     |    | 5,011     |    | 5,011     |    | 5,011     |    | 5,011     |
| Year 7           |      | -        | 5,161           |    | 5,161     |    | 5,161     |    | 5,161     |    | 5,161     |    | 5,161     |
| Year 8           |      | -        | 5,316           |    | 5,316     |    | 5,316     |    | 5,316     |    | 5,316     |    | 5,316     |
| Year 9           |      | -        | 5,476           |    | 5,476     |    | 5,476     |    | 5,476     |    | 5,476     |    | 5,476     |
| Year 10          |      | -        | 5,640           |    | 5,640     |    | 5,640     |    | 5,640     |    | 5,640     |    | 5,640     |
| Year 11          |      | -        | 5,809           |    | 5,809     |    | 5,809     |    | 5,809     |    | 5,809     |    | 5,809     |
| Year 12          |      | -        | 5,984           |    | 5,984     |    | 5,984     |    | 5,984     |    | 5,984     |    | 5,984     |
|                  |      |          |                 |    |           |    |           |    |           |    |           |    |           |
| NPV (\$)         |      | -        | (118,883)       |    | (80,788)  |    | (42,693)  |    | (4,598)   |    | 9,486     |    | 33,498    |
| Payback (Years)  |      | -        | 39.18           |    | 29.93     |    | 20.67     |    | 11.42     |    | 8.00      |    | 2.17      |
| IRR (%)          |      | -        | -12.5%          |    | -9.6%     |    | -5.1%     |    | 3.3%      |    | 9.5%      |    | 48.6%     |

# **Economic Sizing of Microgrid - 3**

#### **SCENARIO 3:**

- ✓ 2 power outages (16 hours) in the next 12 years (years 2 and 8)
- ✓ Electricity price escalation 3% per year
- ✓ Interest rate 5%

#### Incentives required for profitability limits:

• Genset + grid: \$0

• PV + battery + grid: \$126,000

|                  | SOLUTION1    |              |    |           |                 |                 |                 |                 |
|------------------|--------------|--------------|----|-----------|-----------------|-----------------|-----------------|-----------------|
|                  | 50 kW Genset | 200 kWh      |    | 200 kWh   | 200 kWh         | 200 kWh         | 200 kWh         | 200 kWh         |
| TOTAL Investment | \$ (24,000)  | \$ (180,000) | \$ | (180,000) | \$<br>(180,000) | \$<br>(180,000) | \$<br>(180,000) | \$<br>(180,000) |
| Incentives       | \$ -         | \$ -         | \$ | 40,000    | \$<br>80,000    | \$<br>120,000   | \$<br>125,884   | \$<br>160,000   |
| Avoided costs    | \$ 19,535    | \$ 19,535    | \$ | 19,535    | \$<br>19,535    | \$<br>19,535    | \$<br>19,535    | \$<br>19,535    |
| Own capital      | \$ (10,000)  | \$ (160,465) | \$ | (120,465) | \$<br>(80,465)  | \$<br>(40,465)  | \$<br>(34,581)  | \$<br>(465)     |
| Year 1           |              | 4,323        |    | 4,323     | 4,323           | 4,323           | 4,323           | 4,323           |
| Year 2           | -            | 4,452        |    | 4,452     | 4,452           | 4,452           | 4,452           | 4,452           |
| Year 3           | -            | 4,586        |    | 4,586     | 4,586           | 4,586           | 4,586           | 4,586           |
| Year 4           | -            | 4,723        |    | 4,723     | 4,723           | 4,723           | 4,723           | 4,723           |
| Year 5           | -            | 4,865        |    | 4,865     | 4,865           | 4,865           | 4,865           | 4,865           |
| Year 6           | -            | 5,011        |    | 5,011     | 5,011           | 5,011           | 5,011           | 5,011           |
| Year 7           | -            | 5,161        |    | 5,161     | 5,161           | 5,161           | 5,161           | 5,161           |
| Year 8           | -            | 5,316        |    | 5,316     | 5,316           | 5,316           | 5,316           | 5,316           |
| Year 9           | -            | 5,476        |    | 5,476     | 5,476           | 5,476           | 5,476           | 5,476           |
| Year 10          | -            | 5,640        |    | 5,640     | 5,640           | 5,640           | 5,640           | 5,640           |
| Year 11          | -            | 5,809        |    | 5,809     | 5,809           | 5,809           | 5,809           | 5,809           |
| Year 12          | -            | 5,984        |    | 5,984     | 5,984           | 5,984           | 5,984           | 5,984           |
|                  |              |              |    |           |                 |                 |                 |                 |
| NPV (\$)         | 9,524        | (110,404)    |    | (72,308)  | (34,213)        | 3,882           | 9,486           | 41,977          |
| Payback (Years)  | -            | 37.12        |    | 27.87     | 18.61           | 9.36            | 8.00            | 0.11            |
| IRR (%)          | -            | -11.9%       | 5  | -8.7%     | -3.8%           | 6.6%            | 9.5%            | 932.0%          |

# **Economic Sizing of Microgrid - 4**

#### **SCENARIO 4:**

- √ 3 power outages (24 hours) in the next 12 years
  (years 2, 6 and 8)
- ✓ Electricity price escalation 3% per year
- ✓ Interest rate 5%

#### Incentives required for profitability limits:

• Genset + grid: \$0

• PV + battery + grid: \$117,500

|                  | SOI  | LUTION1  | SOLUTION 2      |    |           |    |           |    |           |    |           |    |           |
|------------------|------|----------|-----------------|----|-----------|----|-----------|----|-----------|----|-----------|----|-----------|
|                  | 50 k | W Genset | 200 kWh         |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |    | 200 kWh   |
| TOTAL Investment | \$   | (24,000) | \$<br>(180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) | \$ | (180,000) |
| Incentives       | \$   | -        | \$<br>-         | \$ | 40,000    | \$ | 80,000    | \$ | 117,492   | \$ | 120,000   | \$ | 160,000   |
| Avoided costs    | \$   | 27,927   | \$<br>27,927    | \$ | 27,927    | \$ | 27,927    | \$ | 27,927    | \$ | 27,927    | \$ | 27,927    |
| Own capital      |      |          | \$<br>(152,073) | \$ | (112,073) | \$ | (72,073)  | \$ | (34,581)  | \$ | (32,073)  | \$ | 7,927     |
| Year 1           |      |          | 4,323           |    | 4,323     |    | 4,323     |    | 4,323     |    | 4,323     |    | 4,323     |
| Year 2           |      | -        | 4,452           |    | 4,452     |    | 4,452     |    | 4,452     |    | 4,452     |    | 4,452     |
| Year 3           |      | -        | 4,586           |    | 4,586     |    | 4,586     |    | 4,586     |    | 4,586     |    | 4,586     |
| Year 4           |      | -        | 4,723           |    | 4,723     |    | 4,723     |    | 4,723     |    | 4,723     |    | 4,723     |
| Year 5           |      | -        | 4,865           |    | 4,865     |    | 4,865     |    | 4,865     |    | 4,865     |    | 4,865     |
| Year 6           |      | -        | 5,011           |    | 5,011     |    | 5,011     |    | 5,011     |    | 5,011     |    | 5,011     |
| Year 7           |      | -        | 5,161           |    | 5,161     |    | 5,161     |    | 5,161     |    | 5,161     |    | 5,161     |
| Year 8           |      | -        | 5,316           |    | 5,316     |    | 5,316     |    | 5,316     |    | 5,316     |    | 5,316     |
| Year 9           |      | -        | 5,476           |    | 5,476     |    | 5,476     |    | 5,476     |    | 5,476     |    | 5,476     |
| Year 10          |      | -        | 5,640           |    | 5,640     |    | 5,640     |    | 5,640     |    | 5,640     |    | 5,640     |
| Year 11          |      | -        | 5,809           |    | 5,809     |    | 5,809     |    | 5,809     |    | 5,809     |    | 5,809     |
| Year 12          |      | -        | 5,984           |    | 5,984     |    | 5,984     |    | 5,984     |    | 5,984     |    | 5,984     |
|                  |      |          |                 |    |           |    |           |    |           |    |           |    |           |
| NPV (\$)         |      | 3,927    | (102,411)       |    | (64,316)  |    | (26,220)  |    | 9,486     |    | 11,875    |    | 49,970    |
| Payback (Years)  |      | -        | 35.18           |    | 25.93     |    | 16.67     |    | 8.00      |    | 7.42      |    | 0.00      |
| IRR (%)          |      | -        | -11.3%          |    | -7.9%     |    | -2.3%     |    | 9.5%      |    | 11.0%     |    | 0.00      |

# **Conclusions & Next Steps**

### **Conclusions**

- The propane genset microgrid would be profitable if HARC suffers at least 16 working hours of power outages in the next 12 years.
- The PV + batteries microgrid project would be profitable if:
  - ✓ HARC suffers a 106 working hours power blackout (13.25 working days), an scenario that already happen in the area during hurricane lke in August 2008.
  - ✓ OR HARC receives a \$145,500 incentive.
  - ✓ AND Several scenarios in between, such as a 24-working hours power outage and a \$117,500 incentive.

### **Next Steps**

- Other business models and power storage technologies might be considered as well.
  - ✓ Work with a third party on an energy savings performance contract with some specific conditions for power supply during emergency operating conditions.
  - ✓ Exploring with the manufacturer the alternatives to transform our grid-tied inverters to off-grid inverters and install batteries or other power storage technology.
- Develop our own solution and energy management system in collaboration with partners.



# Thank You!

Carlos Gamarra, PE, CEM cgamarra@harcresearch.org

HARC (härk), *n*. an independent research hub helping people thrive and nature flourish.