## Adapting Existing Electrical Systems for Modern Microgrids



Chris Evanich, S&C Electric Erika Weliczko, Case Western Reserve University

#### Outline

- Review traditional electrical distribution system
- Describe modern electrical system requirements
- Identify microgrid implementation challenges
- Review examples
- Identify how to get started

#### Traditional Grid

#### Central generation, one way power flow



# Typical Radial Distribution to Buildings

- One supply path
- No onsite generation to feed loads



## Typical Protection in Radial Distribution

#### Relays protect based on:

- Overcurrent
- Differential current
- Reverse current
- Fault to ground

# Typical Protection in Radial Distribution at Building

Breakers and fused switches protect based on:

Overcurrent



#### Grid of the Future

Distributed generation, multidirectional power flow



## Modern Electrical System Requirements

- Enhance restoration capabilities
- Increase backup for critical loads
- Manage demand costs
- Incorporate renewables

# Redundancy and Resilience Opportunities

- Include new interconnection points
- Incorporate onsite generation



#### Microgrid Implementation Challenges

- Protection adjustments
  - Varying topologies
  - Fault sources
- New hardware requirements
  - Breakers and switches
  - Feeders
- Additional communication requirements

#### Example Microgrid Scenarios

- 12.47 kV System
- 250 kW BESS
- 1 MW Natural Gas Generator
- Renewable resources

| Grid-Tied<br>Fault<br>Current<br>(kA) | Islanded<br>Max Fault<br>Current<br>(kA) | Islanded<br>Min Fault<br>Current<br>(kA) | Max Load<br>Current<br>(kA) |
|---------------------------------------|------------------------------------------|------------------------------------------|-----------------------------|
| 5.0                                   | 0.5                                      | 0.02                                     | 0.05                        |

#### Coordinating with Existing Devices

- Existing devices on system are likely overcurrent protection
  - Lateral and transformer fuses
  - Low-voltage breakers
  - Generator + inverter breakers
- Some devices may not operate while islanded
- If selected carefully, breakers can be coordinated for many fault scenarios



## Example Fault Scenario



## Example Fault Scenario



#### Challenges in Identifying Direction

- Delay in relay
- System frequency changes
- Inverter output waveforms
- CT saturation

## Microgrid Protection Challenges



#### Microgrid Protection Solutions

- Define separate interconnected and islanded settings
  - What device determines setting group?
  - How is the setting group determined?
  - When do the relays transition setting groups?
- Protect against undesired paralleling
  - Synchronization check
  - Blocking close

#### Microgrid Protection Options

- Zone Interlocking: Uses relays to share direction of current, upstream provide authorization for downstream breaker to trip
- Differential: Utilizes Kirchhoff's Current Law to evaluate if fault is in equipment
- Directional: Uses relays to share direction of current, upstream blocked by downstream experiencing fault with delay



#### Microgrid Protection: Key Takeaways

Differentiate between load, inrush, and fault current through all configurations

Design selective coordination with directionality in microgrid protection

Coordinate with downstream overcurrent devices

#### New Hardware Requirements

- Self-Healing Electrical Grid
  - Interrupt fault current with breaker
  - Segment load with switch
- Point of Interconnection Device
  - Detect loss of source
  - Detect power quality events
    - Single or open phase
    - Unbalanced voltage
  - Protect distribution system equipment
- Microgrid Control System
  - Address legacy and new equipment
  - Execute sequence of events
  - Manage cybersecurity







#### Microgrid Communication

- Communication Medium
- Supervisory Control and Data Acquisition (SCADA)
- Protection



#### Microgrid Implementation - IIT

#### Illinois Institute of Technology – Chicago, IL

- Improved reliability, \$1.3 million annually
- Reduced their peak demand charge
- T&D Deferral \$5 million substation



10/26/2018 | ©2018 S&C Electric Company Confidential and Proprietary, Not to be shared, distributed or reproduced without written approval.

#### Microgrid Feasibility: Single Building

Medical Research 265,000 GSF, ~550 kbtu/sf 1995 construction annual usage:

12,000,000 kwh ELE, 53,000,000 lbs STM 3,000,000 ton-hrs CHW

Served by double-ended substation
Fuses provide overcurrent protection
1MW diesel backup generator onsite
Other generators (2MW+) nearby



#### Microgrid Feasibility: Distributed Generation

Utility Distribution Hub
Steam and Electricity Infrastructure
serving 1.3M+ GSF

#### annual usage:

- 15,000,000 kwh ELE
- 81,000,000 lbs STM

2.4kV substation with electromechanical relay overcurrent protection

11.4kV switching hub

~1 MW backup generation at downstream buildings

2000-ton chiller plant downstream



#### Getting Started

- Assemble information about existing electrical system including:
  - One lines (including feeder information, utility configuration)
  - Existing relays and configuration
  - Fault study of existing configuration(s)
- Conduct initial feasibility assessment:
  - Existing onsite generation (type, location, size, and control)
  - Identification of critical loads (location, size, and controllability)
  - Load profiles of critical and secondary/shedable loads
  - Communication infrastructure across the facilities
  - Thermal loads to be included in a microgrid
  - Intended use of microgrid

# Creating a microgrid presents many technical challenges

- Faults and Protection
  - Microgrid protection involves sophisticated use of communication-assisted schemes and adaptive relay settings
- Hardware Integration
  - Microgrids require careful selection of equipment to interconnect new and existing resources
- Control Infrastructure
  - Microgrid controller requires a communication network to manage the generation and load within the network

#### Questions?

Chris Evanich, S&C Electric Chris.evanich@sandc.com

Erika Weliczko, Case Western Reserve University emw3@case.edu

