Plug-and-Play Microgrid Control Systems

Scott Manson Schweitzer Engineering Laboratories, Inc.

Microprocessor Relays Control Small Grids

Relay-Based Microgrid Technology Won Microgrid Shootout

- Worldwide competition
- Hardware-in-the-loop testing
- Cyber-physical testbed

Microprocessor Relays Are Microgrid Controllers

- Multifunction protection
- Remote I/O
- Metering
- Power quality monitoring
- Programmable
 logic controller

• IEC 61850

- Sequence of Events recorder
- Embedded and whitelisted controllers
- Military-specified
 environmental ratings

Microprocessor Relays Are Microgrid Controllers

- High-speed communication
- Continuous self-diagnostics
- Synchrophasors
- DC battery monitoring
- Human interface displays

- Trip and close controls
- Oscillography recorder
- No operating system
- Hundreds of thousands of units in operation

Plug-and-Play Microgrid Design Objectives

- Reduce complexity
- Scale from 10 kW to 10 MW
- Ensure cybersecurity
- Leverage relay-based control
- Interoperate with all gensets and inverters
- Reduce fuel usage

- Improve grid resilience
- Reduce operational costs
- Simplify commissioning
- Simplify testing
- Improve equipment
 protection
- Ensure human safety

Military Tactical Microgrid Standard (TMS) Providing the Next Generation of Operational Power for the U.S. Department of Defense

Tactical Quiet Generator (TQG)

Interoperable (2018)

U.S. Army Demonstration Project Opportunity

Data Distribution Service (DDS) Brings Plug-and-Play Communications

* Real-time automation controller

User-Friendly RTAC Configuration

Reduced Part Count Increases Reliability

TQG Before Refurbishing Custom-Built Electronics Removed Replaced With Fewer, Lighter, Off-the-Shelf Parts

Secure Networks Support Any Distance

Time-Synchronized Condition Monitoring

No Single Point of Failure

Superior Load Sharing and Frequency Control

Cybersecure by Design

- Software-defined network
- Embedded, whitelisted controllers
- Secure supply chain
- Electronics manufactured in U.S.
- Policy, plan, and procedure
- Mature processes

Wet-Stacking Correction Strategy Does Not Burn Extra Fuel

Microgrid Consumes Less Fuel

Conclusions

- Interoperability between gensets achieved
- Minimal skill required to operate and configure
- 30–60% fuel saved
- Engine life prolonged
- Power system survives all manner of failures
- IEEE 1547, 2030.7, and 2030.8 standards met
- Costs reduced >70%

Questions?

