

Drought Mitigation: Replacing Potable Water For Cooling With Reclaimed Water

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Douglas Mullen University of North Carolina At Chapel Hill

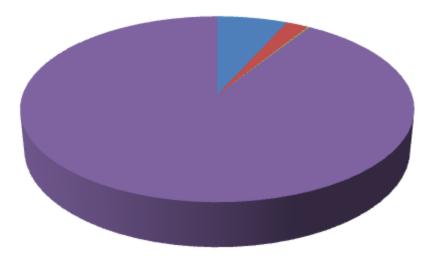
Maurice Galey Nalco, An Ecolab Company

Essential Expertise for Water, Energy and Air

Agenda

- What? Replace potable water with reclaim
- Why? Necessity and sustainability
- How? Little to no changes to operations
- Getting Started
- Operating Challenges and Solutions
 - Mechanical, Operational, Chemical
- Maintenance Challenges and Solutions
 - Mechanical, Operational, Chemical
- End Result

What: Replace Potable Water For Cooling With Reclaimed Water


Potable Water Uses

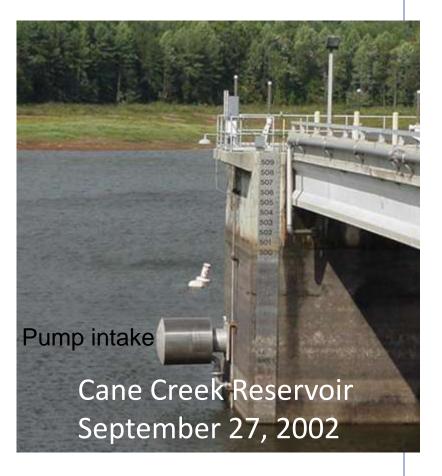
- Drinking
- Irrigation
- Cooling

Reclaimed Water Sources

- Rain Water
- Air Handler Condensate
- Municipal Reclaim

Annual Water Use in Gallons: 2013

- UNC Chiller RCW 168,261,000
- UNC Hospitals RCW 54,545,000
- UNC Non Cooling RCW 3,278,000
- Other Chapel Hill 2,286,000,000



Why: Necessity, Sustainability

Many Reasons

- Feasibility Study 1995
- Drought Mitigation 2002 call to action
- Drought 2007 Accelerated Plan
- Days of Water LEFT:
 - Oct 9, 2002 31.8% only 110 days (Demand 9.7MGD)
 - Feb 12, 2008 38.8% only 169 days (Demand 8.18MGD)
 - Many customers conserved reducing demand
- OWASA expansions and extensions
 - Moves supply expansion from 2027 to 2044

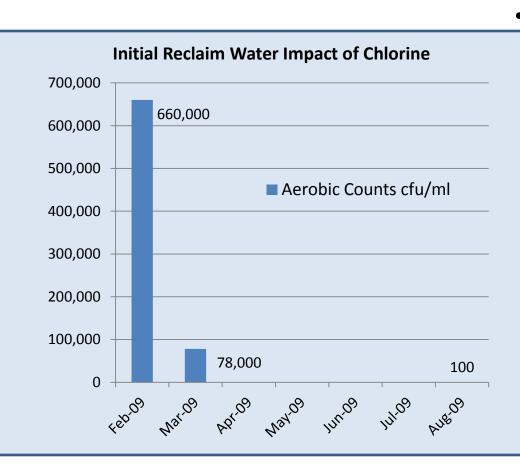
How: operate the systems using municipal reclaim water as make up with no additional safety, maintenance, operational, time or capital investment to operate.

Built to "2T Rule" Now have to be built to state rules

OWASA Side

- Built one 600,000 gallon system
- Installed some of the initial piping during 2006 tunnel project

What is the distance from source to end user		
	Feet	Gallons
OWASA WWTP to East Chiller Plant take off	7,257	185,960
East Chiller Plant take off to Hibbard Rd split	5,865	150,290
Hibbard Rd split to South Chiller Plant	1,672	16,880
Hibbard Rd split to North Chiller Plant take off	2,906	64,164
Hibbard Rd split to Cobb Chiller Plant take off	4,925	100,830
Longest feed to chiller plant - OWASA WWTP to Cobb Chiller Plant	18,047	439,080


UNC Side

- No fundamental changes to tower pipe or wetted parts
- Had to add potable water air breaks to North and South CP

Safety in Transport

- From OWASA to UNC
 - Testing and recommendations from UNC CH's Dr. Sobsey
 - Chlorine Targets set at 0.5 to 2.0
 - <<As the chlorine was applied bacteria was controlled

✓ NALCO

Essential Expertise for Water, Energy and Air

 Performance in Evaporative Cooling Systems

- Pilot Testing
 - Reclaim process
 - In Pilot cooling towers
- To confirm ability to control corrosion, deposits, microbiological growth and fouling
- Define parameters clearly and use specific units
 - Phosphate as PO4 ppm

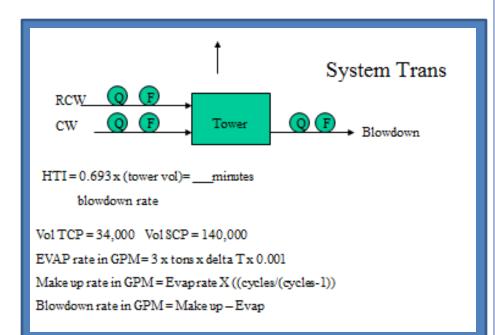
Water transported in totes

WWTP Pilot Skid

≈_{NALCO}

- Performance in Evaporative Cooling Systems
 - Asset preservation pilot testing documented the ability to treat the water>>
 - MS corrosion rates <3 mpy
 - Copper corrosion rates <0.1 mpy
 - Deposit control
 - 0 to 1 mg/cm2yr

 Safety in Evaporative Cooling Systems


- Deposit and corrosion control in place
- Biodispersants in place
- Biocides alternated
- Monitoring done
- Mechanical Cleanings scheduled and completed
- ASHRAE 188P planning begun

Lessons Learned: GETTING STARTED Real Life Examples - things that popped up

- Put flush valves on utility side of meter to allow flushing. We found alkalinity builds and bugs grow in line during nonuse periods
- Ensure flush line access to sanitary sewer
- Be prepared to run lower than target cycles while reclaim process established base line
- Have an algorithm to change between city and reclaim and back

Account for volumes and holding time indices

Operating Challenges and Solutions: MECHANICAL

Challenges: OWASA to UNC	Solutions: OWASA to UNC
Old Mason Road Plant lower than UNC	High head pumps
Low flow conditions	Two pump sizes
Challenges: UNC to Tower	Solutions: UNC to Tower
Raw reclaim water aggressiveness to make	Pipe materials: change make up pipe material
up pipe	from steel to stainless
Challenges: Tower Loop	Solutions: Tower Loop
Required mechanical air break for potable	Reclaim installed as main make up, city
water	installed with air break
Challenges: UNC to OWASA	Solutions: UNC to OWASA
If cycles reduced will larger sewer be	Sewer capacity at Chilled Water was
required	sufficient

SM

Operating Challenges and Solutions MECHANICAL EXAMPLES

Reclaim entering Tomkins Tower Loop

City make up enter Tomkins Tower via air break configuration

Operating Challenges and Solutions: OPERATIONAL/ON LINE

Challenges: OWASA to UNC	Solutions: OWASA to UNC
Old Mason Road Plant lower than UNC	Four pumps set to ramp up/down to maintain P
Low flow conditions	Installation of pressure sustaining valve at WWTP to allow better pump control
Challenges: UNC to Tower	Solutions: UNC to Tower
Changes in water quality when it stands in the lines	Installed blow off lines on utility side of meter
Raw reclaim water aggressiveness to make up pipe	Pipe materials: change make up pipe material from steel to stainless
Challenges: Tower Loop	Solutions: Tower Loop
Change in water quality: Conductivity, probes max at 4,000	Wider span probes
Variation in conductivity between city and reclaim	Control cycles using algorithm that includes make up conductivity, tower conductivity, holding time index

SM

Operating Challenges and Solutions OPERATIONAL / ON LINE EXAMPLES

Reclaim make up data monitored at both locations and shared between OWASA and UNC

AIT_6809W_pH: AIT_6810W_Turbidity AIT_6812W_CL2 AIT_6817W_Alkalinity FIT_6805A_Flow_A FIT_6805B_Flow_B LIT_6803W_Tank_A LIT_6804W_Tank_B PIT_6807W_Pump_psig

6.77 pH 0.92 ntu 3.44 ppm 28.90 mg/l 656.90 gpm 672.45 gpm 7.45 ft 7.44 ft 122.95 psi

Operating Challenges and Solutions: CHEMICAL

Challenges: OWASA to UNC	Solutions: OWASA to UNC
pH w/o using local acid feed on UNC Campus	Installed acid delivery and pH control at OWASA
Chlorine	Feed to meet levels established by Dr. Sobsey
Challenges: UNC to Tower	Solutions: UNC to Tower
Changes in water quality when it stands in the lines	Reduce cycles to consume water
Reclaim water aggressiveness to pipe	Proper Corrosion inhibitors per metallurgy
Challenges: Tower Loop	Solutions: Tower Loop
Change in water quality: Conductivity	Control cycles using algorithm that includes make up conductivity and tower conductivity
Hardness	Control scale dispersant based on tower stress
Alkalinity	Control scale dispersant based on tower stress
Phosphate	Control scale dispersant based on tower stress

SM

Operating Challenges and Solutions CHEMICAL

Last 7 Days			Data D	ashboar	d (Cont.)				Tomkins	s Tower new	chem 2009
Parameter Name	Date & Time	Latest Value	Avg.	Min.	Max.	St. Dev.	Low Critical Limit	Low Limit	High Limit	High Critical Limit	Latest Value
Copper Corr. Rate (mpy)	12/29/2013 7:00:00 AM	0.01	0.01	0.01	0.01	0			0.3	0.5	
Conductivity (µS/cm)	12/29/2013 7:00:00 AM	3237.68	3333.04	3011.13	3679.93	199.78	800	900	4000	5000	
TRASAR Dose (ppm)	12/29/2013 7:00:00 AM	31.16	32.51	30.07	35.38	1.18					\square
ORP (mV)	12/29/2013 7:00:00 AM	287	269.57	225	296	20.95	0	50	500	650	
Tagged Poly Dose (ppm)	12/29/2013 7:00:00 AM	83.47	85.02	72.01	93.06	2.58					\square
рH	12/29/2013 7:00:00 AM	8.91	8.99	8.46	9.26	0.13	6	7.5	9.5	10	
TRASAR Product Usage (gpd)	12/29/2013 12:00:00 AM	0	0	0	0	0					
Ox Bio Usage (gpd)	12/29/2013 12:00:00 AM	0	0.3	0	2.07	0.57					
4-20mA Input 1	12/29/2013 7:00:00 AM	0	0	0	0	0					\square
4-20mA Input 2	12/29/2013 7:00:00 AM	0	0	0	0	0					\square
Temperature (°F)	12/29/2013 7:00:00 AM	45.02	49.99	39.72	76.91	13.76	32	40	120	140	
Turbidity (NTU)	12/29/2013 7:00:00 AM	0	0	0	0	0			50	150	
Flow Status	12/29/2013 7:00:00 AM	1	0.92	0	1	0.28	0	0	1	1	
Cell Fouling (%)	12/29/2013 7:00:00 AM	0	0	0	0	0			25	50	

24/7 Monitoring and Control Data seen by Nalco and UNC

Maintenance Challenges and Solutions: MECHANICAL

Challenges: OWASA to UNC	Solutions: OWASA to UNC
Water quality and impact on corrosion, scale	Pipe materials, pH control
Challenges: UNC to Tower	Solutions: UNC to Tower
Raw reclaim water aggressiveness to make	Pipe materials: change make up pipe material
up pipe	from steel to stainless
Challenges: Tower Loop	Solutions: Tower Loop
Required mechanical air break for potable	Reclaim installed as main make up, city
water means two lines make up systems to	installed with air break
maintain	
Changes to corrosion rates with changes in	Once reclaim water is in the tower loop and
make up source	treated corrosion rates demonstrate at or
	below industrial standards
Challenges: UNC to OWASA	Solutions: UNC to OWASA
If cycles reduced will larger sewer be	Sewer sized for higher discharge volumes in
required	original design

SM

Maintenance Challenges and Solutions MECHANICAL EXAMPLES

Municipal Reclaim Make up: Steel

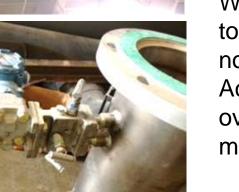
Municipal Reclaim Make up: SS

Essential Expertise for Water, Energy and Air

Maintenance Challenges and Solutions: OPERATIONAL / ON LINE

Challenges: OWASA to UNC	Solutions: OWASA to UNC
Maintenance handled by OWASA	
Alkalinity drift	Flush lines
Challenges: UNC to Tower	Solutions: UNC to Tower
Sensor Maintenance	Regular cleaning of sensors will be reduced when MU line goes to stainless
	Be sure to select instruments that are geared to this water quality
Challenges: Tower Loop	Solutions: Tower Loop
Additional solids means additional	Annual to semi-annual tower cleaning
evaporative scale	Wider span on conductivity at tower
Deposition in some sensors	Dead legs even more critical to manage

≈_{NALCO}


Maintenance Challenges and Solutions ON LINE EXAMPLES

Tower Inspections: Normal Basin: dirt, silt, very minimal Fill/Structure: clean

Dead leg deposits: at instrument wells Silica, Calcium aluminum present Soft Texture 22% organic or carbonate

Transmitter

Water enters top to bottom no flow in leg Accumulates over six months

≈_{NALCO}

Essential Expertise for Water, Energy and Air

Maintenance Challenges and Solutions: CHEMICAL

Challenges: UNC to Tower	Solutions: UNC to Tower
Maintaining ph, conductivity probe cleanliness	Stainless lines, regular calibration, semi-annual cleaning
Challenges: Tower Loop	Solutions: Tower Loop
Deposits or foulants in small dead legs	Deposit identification:
or at sensors with no flow	Instrument cleaning
	Deposit prevention

Maintenance Challenges and Solutions CHEMICAL

Selection of piping and probes to handle the water quality at both reclaim make up and tower loop

Tower and mu probes installed with proper flow and ability to clean and maintain

Clean and calibration schedule based on predictive need

End Result

Total Gallons of City Water Diverted in 2013: 226,084,000

Number of Treated System Failures: 0 No piping, equipment, instrument inspection failures: 0

What to do differently:

Ensure non treated pipes are corrosion resistant to account for more aggressive reclaim make up water

System blow offs to be installed before meters and more strategically with respect to sanitary sewer locations

